Real-Time Multimodel Superensemble Forecasts of Atlantic Tropical Systems of 1999

C. Eric Williford Department of Meteorology, The Florida State University, Tallahassee, Florida

Search for other papers by C. Eric Williford in
Current site
Google Scholar
PubMed
Close
,
T. N. Krishnamurti Department of Meteorology, The Florida State University, Tallahassee, Florida

Search for other papers by T. N. Krishnamurti in
Current site
Google Scholar
PubMed
Close
,
Ricardo Correa Torres Department of Meteorology, The Florida State University, Tallahassee, Florida

Search for other papers by Ricardo Correa Torres in
Current site
Google Scholar
PubMed
Close
,
Steven Cocke Department of Meteorology, The Florida State University, Tallahassee, Florida

Search for other papers by Steven Cocke in
Current site
Google Scholar
PubMed
Close
,
Zaphiris Christidis T. J. Watson Laboratory, IBM, New York, New York

Search for other papers by Zaphiris Christidis in
Current site
Google Scholar
PubMed
Close
, and
T. S. Vijaya Kumar Department of Meteorology, The Florida State University, Tallahassee, Florida

Search for other papers by T. S. Vijaya Kumar in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this paper, Atlantic hurricane forecasts for the year 1999 are addressed. The methodology for these forecasts is called the multimodel superensemble. This statistical method makes use of the real-time forecasts provided by a number of operational and research models to construct the superensemble forecasts. This method divides the forecast time line into two phases: a training phase and a forecast combining phase. The training phase includes an inventory of past applicable hurricane forecasts, each by the multimodels. The model biases of position and intensity errors of past forecasts are summarized via a simple linear multiple regression of these forecasts against the best-observed estimates of position and intensity. These statistics are next passed on to future forecasts of the multimodels in order to forecast the hurricanes of 1999. This method was first tested for the hurricanes of 1998 with considerable success, with some of those results summarized here. Those statistics were refined for the 1999 Atlantic hurricane season. Overall, the main result of the seasonal summary is that the position and intensity errors for the multimodel superensemble are generally less than those of all of the participating models during 1–5-day real-time forecasts. Some of the major storms of the 1999 season, such as Dennis, Floyd, Irene, and Lenny, were extremely well handled by this superensemble approach. The message of this study is that the proposed approach may be a viable way to construct improved real-time forecasts of hurricane positions and intensity.

Corresponding author address: C. Eric Williford, Weather Predict, Inc., 3200 Atlantic Ave., Suite 114, Raleigh, NC 27604. Email: cew@weatherpredict.com

Abstract

In this paper, Atlantic hurricane forecasts for the year 1999 are addressed. The methodology for these forecasts is called the multimodel superensemble. This statistical method makes use of the real-time forecasts provided by a number of operational and research models to construct the superensemble forecasts. This method divides the forecast time line into two phases: a training phase and a forecast combining phase. The training phase includes an inventory of past applicable hurricane forecasts, each by the multimodels. The model biases of position and intensity errors of past forecasts are summarized via a simple linear multiple regression of these forecasts against the best-observed estimates of position and intensity. These statistics are next passed on to future forecasts of the multimodels in order to forecast the hurricanes of 1999. This method was first tested for the hurricanes of 1998 with considerable success, with some of those results summarized here. Those statistics were refined for the 1999 Atlantic hurricane season. Overall, the main result of the seasonal summary is that the position and intensity errors for the multimodel superensemble are generally less than those of all of the participating models during 1–5-day real-time forecasts. Some of the major storms of the 1999 season, such as Dennis, Floyd, Irene, and Lenny, were extremely well handled by this superensemble approach. The message of this study is that the proposed approach may be a viable way to construct improved real-time forecasts of hurricane positions and intensity.

Corresponding author address: C. Eric Williford, Weather Predict, Inc., 3200 Atlantic Ave., Suite 114, Raleigh, NC 27604. Email: cew@weatherpredict.com

Save
  • Aberson, S. D., and M. DeMaria, 1994: Verification of a nested barotropic hurricane track forecast model (VICBAR). Mon. Wea. Rev., 122 , 28042815.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., and I. Ginis, 2000: Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128 , 917945.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., R. J. Ross, R. E. Tuleya, and Y. Kurihara, 1993: Improvements in tropical cyclone track and intensity forecasts using the GFDL initialization system. Mon. Wea. Rev., 121 , 20462061.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., M. Botzet, and M. Esch, 1995: Hurricane-type vortices in a general circulation model. Tellus, 47 , 175196.

  • Businger, J. A., J. C. Wyngard, Y. Izumi, and E. F. Bradley, 1971: Flux profile relationship in the atmospheric surface layer. J. Atmos. Sci., 28 , 181189.

    • Search Google Scholar
    • Export Citation
  • Chen, Q-S., L-E. Bai, and D. H. Bromwich, 1997: A harmonic-Fourier spectral limited-area model with an external wind lateral boundary condition. Mon. Wea. Rev., 125 , 143167.

    • Search Google Scholar
    • Export Citation
  • Cocke, S., 1998: Case study of Erin using the FSU Nested Regional Spectral Model. Mon. Wea. Rev., 126 , 13371346.

  • DeMaria, M., and J. Kaplan, 1994: Sea surface temperature and the maximum intensity of Atlantic tropical cyclones. J. Climate, 7 , 13241334.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1997: An operational evaluation of a statistical hurricane intensity prediction scheme (SHIPS). Preprints, 22d Conf. on Hurricanes and Tropical Meteorology, Ft. Collins, CO, Amer. Meteor. Soc., 280–281.

    • Search Google Scholar
    • Export Citation
  • Goerss, J. S., 2000: Tropical cyclone track forecasts using an ensemble of dynamical models. Mon. Wea. Rev., 128 , 11871193.

  • Goerss, J. S., and R. Jeffries, 1994: Assimilation of synthetic tropical cyclone observations into the Navy Operational Global Atmospheric Prediction System. Wea. Forecasting, 9 , 557576.

    • Search Google Scholar
    • Export Citation
  • Harshvardan, and T. G. Corsetti, 1984: Longwave parameterization for the UCLA/GLAS GCM. NASA Tech. Memo. 86072, 52 pp.

  • Heming, J. T., 1997: UK Meteorological Office forecast performance during the unusual Atlantic hurricane season of 1995. Preprints, 22d Conf. on Hurricanes and Tropical Meteorology, Ft. Collins, CO, Amer. Meteor. Soc., 511–512.

    • Search Google Scholar
    • Export Citation
  • Hogan, T., and T. Rosmond, 1991: The description of the Navy Operational Global Atmospheric Prediction System's spectral forecast model. Mon. Wea. Rev., 119 , 17861815.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1983: Tropical cyclone motion: Environmental interaction plus a beta effect. J. Atmos. Sci., 40 , 328342.

  • Horsfall, F. M., M. DeMaria, and J. M. Gross, 1997: Optimal use of large-scale boundary and initial fields for limited-area hurricane forecast models. Preprints, 22d Conf. on Hurricanes and Tropical Meteorology, Ft. Collins, CO, Amer. Meteor. Soc., 571–572.

    • Search Google Scholar
    • Export Citation
  • Hoyer, J. M., 1987: The ECMWF spectral limited-area model. Proc. ECMWF Workshop on Techniques for Horizontal Discretization in Numerical Weather Prediction Models, Shinfield Park, Reading, United Kingdom, ECMWF, 343–359.

    • Search Google Scholar
    • Export Citation
  • Jarvinen, B. R., and C. J. Neumann, 1979: Statistical forecasts of tropical cyclone intensity. NOAA Tech. Memo. NWS NHC-10, 22 pp.

  • Juang, H. H-M., and M. Kanamitsu, 1994: The NMC Nested Regional Spectral Model. Mon. Wea. Rev., 122 , 326.

  • Kanamitsu, M., 1975: On numerical prediction over a global tropical belt. Rep. 75-1, Department of Meteorology, Florida State University, 282 pp.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., K. Tada, K. Kudo, N. Sato, and S. Isa, 1983: Description of the JMA operational spectral model. J. Meteor. Soc. Japan, 61 , 812828.

    • Search Google Scholar
    • Export Citation
  • Kitade, T., 1983: Nonlinear normal mode initialization with physics. Mon. Wea. Rev., 111 , 21942213.

  • Krishnamurti, T. N., and L. Bounoua, 1996: An Introduction to Numerical Weather Prediction Techniques,. CRC Press, 293 pp.

  • Krishnamurti, T. N., S. Low-Nam, and R. Pasch, 1983: Cumulus parameterization and rainfall rates II. Mon. Wea. Rev., 111 , 815828.

  • Krishnamurti, T. N., D. Oosterhof, and N. Dignon, 1989: Hurricane prediction with a high-resolution global model. Mon. Wea. Rev., 117 , 631669.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., J. Xue, H. S. Bedi, K. Ingles, and D. Oosterhof, 1991a: Physical initialization for numerical weather prediction over the tropics. Tellus, 43AB , 5381.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., K. S. Yap, and D. K. Oosterhof, 1991b: Sensitivity of tropical storm forecast to radiative destabilization. Mon. Wea. Rev., 119 , 21762205.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., H. S. Bedi, G. D. Rohaly, D. K. Oosterhof, R. C. Torres, E. Williford, and N. Surgi, 1996: Physical initialization. J. Atmos. Oceans, 35 , 369398.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., W. Han, and D. K. Oosterhof, 1998: Sensitivity of hurricane intensity forecasts to physical initialization. Meteor. Atmos. Phys., 65 , 171181.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., C. M. Kishtawal, T. LaRow, D. Bachiochi, Z. Zhang, C. E. Williford, S. Gadgil, and S. Surendran, 1999: Improved skills for weather and seasonal climate forecasts from multimodel superensemble. Science, 285 , 15481550.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., C. M. Kishtawal, D. W. Shin, and C. E. Williford, 2000a: Multimodel superensemble forecasts for weather and seasonal climate. J. Climate, 13 , 41964216.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., C. M. Kishtawal, T. LaRow, D. Bachiochi, Z. Zhang, C. E. Williford, S. Gadgil, and S. Surendran, 2000b: Improving tropical precipitation forecasts from a multianalysis superensemble. J. Climate, 13 , 42174227.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and Coauthors. 2001: Real-time multianalysis–multimodel superensemble forecasts of precipitation using TRMM and SSM/I products. Mon. Wea. Rev., 129 , 28612883.

    • Search Google Scholar
    • Export Citation
  • Kuo, H. L., 1965: On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J. Atmos. Sci., 22 , 4063.

    • Search Google Scholar
    • Export Citation
  • Kuo, H. L., 1974: Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci., 31 , 12321240.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., and M. A. Bender, 1982: Structure and analysis of the eye of a numerically simulated tropical cyclone. J. Meteor. Soc. Japan, 60 , 381395.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., G. J. Tripoli, and M. A. Bender, 1979: Design of a movable nested-mesh primitive equation model. Mon. Wea. Rev., 107 , 239249.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., M. A. Bender, and R. T. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121 , 20302045.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., M. A. Bender, R. E. Tuleya, and R. J. Ross, 1995: Improvements in the GFDL hurricane prediction system. Mon. Wea. Rev., 123 , 27912801.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., R. E. Tuleya, and M. A. Bender, 1998: The GFDL hurricane prediction system and its performance in the 1995 hurricane season. Mon. Wea. Rev., 126 , 13061322.

    • Search Google Scholar
    • Export Citation
  • Lacis, A. A., and J. E. Hansen, 1974: A parameterization for the absorption of solar radiation in the earth's atmosphere. J. Atmos. Sci., 31 , 118133.

    • Search Google Scholar
    • Export Citation
  • Lawrence, M. B., L. A. Avila, J. L. Beven, J. L. Franklin, J. L. Guiney, and R. J. Pasch, 2001: Atlantic hurricane season of 1999. Mon. Wea. Rev., 129 , 30573084.

    • Search Google Scholar
    • Export Citation
  • Lord, S. J., 1991: A bogussing system for vortex circulations in the National Meteorological Center global forecast model. Preprints, 19th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 328–330.

    • Search Google Scholar
    • Export Citation
  • Lord, S. J., H. E. Willoughby, and J. M. Piotrowicz, 1984: Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci., 41 , 28362848.

    • Search Google Scholar
    • Export Citation
  • Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17 , 187202.

  • Mackey, B. P., and T. N. Krishnamurti, 2001: Ensemble forecast of a typhoon flood event. Wea. Forecasting, 16 , 399415.

  • Marks, D. G., 1992: The beta and advection model for hurricane track forecasting. NOAA Tech. Memo. NWS NMC 70, 89 pp.

  • Neumann, C. J., 1972: An alternate to the HURRAN tropical cyclone forecast system. NOAA Tech. Memo. NWS SR-62, 22 pp.

  • Neumann, C. J., and C. J. McAdie, 1991: A revised National Hurricane Center NHC83 model (NHC90). NOAA Tech. Memo. NWS NHC-44, 35 pp.

  • Pasch, R. J., L. A. Avila, and J. L. Guiney, 2001: Atlantic hurricane season of 1998. Mon. Wea. Rev., 129 , 30853099.

  • Reynolds, R. W., and T. M. Smith, 1993: An improved real-time global sea surface temperature analysis. J. Climate, 6 , 114119.

  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44 , 542561.

    • Search Google Scholar
    • Export Citation
  • Surgi, N., H-L. Pan, and S. J. Lord, 1998: Improvement of the NCEP global model over the Tropics: An evaluation of model performance during the 1995 hurricane season. Mon. Wea. Rev., 126 , 12871305.

    • Search Google Scholar
    • Export Citation
  • Thu, T. V., and T. N. Krishnamurti, 1992: Vortex initialization for typhoon track prediction. J. Meteor. Atmos. Phys., 47 , 117126.

  • Tiedke, M., 1984: The sensitivity of the time-mean large-scale flow to cumulus convection in the ECMWF model. Proc. ECMWF Workshop on Convection in Large-Scale Numerical Models, Reading, Berkshire, United Kingdom, ECMWF, 297–316.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., S. Tibaldi, and A. J. Simmons, 1983: Reduction of systematic forecast errors in the ECMWF model through the introduction of envelope orography. Quart. J. Roy. Meteor. Soc., 109 , 683718.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2001: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part I: Model description and control experiment. Mon. Wea. Rev., 129 , 13701394.

    • Search Google Scholar
    • Export Citation
  • Williford, C. E., R. J. Correa-Torres, and T. N. Krishnamurti, 1998: Tropical cyclone forecasts made with the FSU Global Spectral Model. Mon. Wea. Rev., 126 , 13321336.

    • Search Google Scholar
    • Export Citation
  • Zhang, D-L., and E. Altshuler, 1999: The effects of dissipative heating on hurricane intensity. Mon. Wea. Rev., 127 , 30323038.

  • Zhang, Z., and T. N. Krishnamurti, 1999: A perturbation method for hurricane ensemble predictions. Mon. Wea. Rev., 127 , 447469.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 281 112 5
PDF Downloads 172 72 1