Corresponding author address: Mark T. Stoelinga, Dept. of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195-1640. Email: stoeling@atmos.washington.edu
Browning, K. A., 1971: Radar measurements of air motion near fronts. Weather, 26 , 320–340.
Carlson, T. N., 1980: Airflow through midlatitude cyclones and the comma cloud pattern. Mon. Wea. Rev., 108 , 1498–1509.
Davis, C. A., M. T. Stoelinga, and Y-H. Kuo, 1993: The integrated effect of condensation in numerical simulations of extratropical cyclogenesis. Mon. Wea. Rev., 121 , 2309–2330.
Gyakum, J. R., 1983: On the evolution of the QE II storm: Dynamic and thermodynamic structure. Mon. Wea. Rev., 111 , 1156–1173.
Harrold, T. W., 1973: Mechanisms influencing the distribution of precipitation within baroclinic disturbances. Quart. J. Roy. Meteor. Soc., 99 , 232–251.
Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111 , 877–946.
Kleinschmidt, E., 1957: Cyclones and anticyclones. Dynamic Meteorology, S. Flugge, Ed., Handbuch der Physik, Vol. 48, Springer-Verlag, 112–137.
Kuo, Y-H., and R. J. Reed, 1988: Numerical simulation of an explosively deepening cyclone in the eastern Pacific. Mon. Wea. Rev., 116 , 2081–2105.
Kuo, Y-H., M. A. Shapiro, and E. G. Donall, 1991: The interaction between baroclinic and diabatic processes in a numerical simulation of a rapidly intensifying extratropical marine cyclone. Mon. Wea. Rev., 119 , 368–384.
Kuo, Y-H., R. J. Reed., and S. Low-Nam, 1992: Thermal structure and airflow in a model simulation of an occluded marine cyclone. Mon. Wea. Rev., 120 , 2280–2297.
Persson, P. O. G., 1995: Simulations of the potential vorticity structure and budget of FRONTS 87 IOP8. Quart. J. Roy. Meteor. Soc., 121 , 1041–1081.
Pomroy, H., and A. J. Thorpe, 2000: The evolution and dynamical role of reduced upper-tropospheric potential vorticity in Intensive Observing Period One of FASTEX. Mon. Wea. Rev., 128 , 1817–1834.
Reed, R. J., M. T. Stoelinga, and Y-H. Kuo, 1992: A model-aided study of the origin and evolution of the anomalously high potential vorticity in the inner region of a rapidly deepening marine cyclone. Mon. Wea. Rev., 120 , 893–913.
Stoelinga, M. T., 1993: Assessing the role of frictional and diabatic processes in a numerically simulated frontal cyclone using potential vorticity analysis. Ph.D. thesis, University of Washington, 222 pp. [Available from Dept. of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195.].
Stoelinga, M. T., 1996: A potential vorticity-based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone. Mon. Wea. Rev., 124 , 849–874.
Thorpe, A. J., and K. A. Emanuel, 1985: Frontogenesis in the presence of small stability to slantwise convection. J. Atmos. Sci., 42 , 1809–1824.
Wernli, H., 1995: Lagrangian perspective of extratropical cyclogenesis. Ph.D. thesis, ETH Zurich, Zurich, Switzerland, 157 pp. [Available from Swiss Federal Institute of Technology, ETH Zentrum, CH-8092 Zurich, Switzerland.].
Wernli, H., and H. C. Davies, 1997: A Lagrangian based analysis of extratropical cyclones: The method and some applications. Quart. J. Roy. Meteor. Soc., 123 , 467–490.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 74 | 40 | 4 |
PDF Downloads | 32 | 12 | 1 |
Displayed acceptance dates for articles published prior to 2023 are approximate to within a week. If needed, exact acceptance dates can be obtained by emailing amsjol@ametsoc.org.
Corresponding author address: Mark T. Stoelinga, Dept. of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195-1640. Email: stoeling@atmos.washington.edu
Corresponding author address: Mark T. Stoelinga, Dept. of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195-1640. Email: stoeling@atmos.washington.edu
Browning, K. A., 1971: Radar measurements of air motion near fronts. Weather, 26 , 320–340.
Carlson, T. N., 1980: Airflow through midlatitude cyclones and the comma cloud pattern. Mon. Wea. Rev., 108 , 1498–1509.
Davis, C. A., M. T. Stoelinga, and Y-H. Kuo, 1993: The integrated effect of condensation in numerical simulations of extratropical cyclogenesis. Mon. Wea. Rev., 121 , 2309–2330.
Gyakum, J. R., 1983: On the evolution of the QE II storm: Dynamic and thermodynamic structure. Mon. Wea. Rev., 111 , 1156–1173.
Harrold, T. W., 1973: Mechanisms influencing the distribution of precipitation within baroclinic disturbances. Quart. J. Roy. Meteor. Soc., 99 , 232–251.
Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111 , 877–946.
Kleinschmidt, E., 1957: Cyclones and anticyclones. Dynamic Meteorology, S. Flugge, Ed., Handbuch der Physik, Vol. 48, Springer-Verlag, 112–137.
Kuo, Y-H., and R. J. Reed, 1988: Numerical simulation of an explosively deepening cyclone in the eastern Pacific. Mon. Wea. Rev., 116 , 2081–2105.
Kuo, Y-H., M. A. Shapiro, and E. G. Donall, 1991: The interaction between baroclinic and diabatic processes in a numerical simulation of a rapidly intensifying extratropical marine cyclone. Mon. Wea. Rev., 119 , 368–384.
Kuo, Y-H., R. J. Reed., and S. Low-Nam, 1992: Thermal structure and airflow in a model simulation of an occluded marine cyclone. Mon. Wea. Rev., 120 , 2280–2297.
Persson, P. O. G., 1995: Simulations of the potential vorticity structure and budget of FRONTS 87 IOP8. Quart. J. Roy. Meteor. Soc., 121 , 1041–1081.
Pomroy, H., and A. J. Thorpe, 2000: The evolution and dynamical role of reduced upper-tropospheric potential vorticity in Intensive Observing Period One of FASTEX. Mon. Wea. Rev., 128 , 1817–1834.
Reed, R. J., M. T. Stoelinga, and Y-H. Kuo, 1992: A model-aided study of the origin and evolution of the anomalously high potential vorticity in the inner region of a rapidly deepening marine cyclone. Mon. Wea. Rev., 120 , 893–913.
Stoelinga, M. T., 1993: Assessing the role of frictional and diabatic processes in a numerically simulated frontal cyclone using potential vorticity analysis. Ph.D. thesis, University of Washington, 222 pp. [Available from Dept. of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195.].
Stoelinga, M. T., 1996: A potential vorticity-based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone. Mon. Wea. Rev., 124 , 849–874.
Thorpe, A. J., and K. A. Emanuel, 1985: Frontogenesis in the presence of small stability to slantwise convection. J. Atmos. Sci., 42 , 1809–1824.
Wernli, H., 1995: Lagrangian perspective of extratropical cyclogenesis. Ph.D. thesis, ETH Zurich, Zurich, Switzerland, 157 pp. [Available from Swiss Federal Institute of Technology, ETH Zentrum, CH-8092 Zurich, Switzerland.].
Wernli, H., and H. C. Davies, 1997: A Lagrangian based analysis of extratropical cyclones: The method and some applications. Quart. J. Roy. Meteor. Soc., 123 , 467–490.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 74 | 40 | 4 |
PDF Downloads | 32 | 12 | 1 |