Evaluating Mesoscale NWP Models Using Kinetic Energy Spectra

William C. Skamarock National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by William C. Skamarock in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Kinetic energy spectra derived from observations in the free atmosphere possess a wavenumber dependence of k−3 for large scales, characteristic of 2D turbulence, and transition to a k−5/3 dependence in the mesoscale. Kinetic energy spectra computed using mesoscale and experimental near-cloud-scale NWP forecasts from the Weather Research and Forecast (WRF) model are examined, and it is found that the model-derived spectra match the observational spectra well, including the transition. The model spectra decay at the highest resolved wavenumbers compared with observations, indicating energy removal by the model's dissipation mechanisms. This departure from the observed spectra is used to define the model's effective resolution. Various dissipation mechanisms used in NWP models are tested in WRF model simulations to examine the mechanisms' impact on a model's effective resolution. The spinup of the spectra in forecasts is also explored, along with spectra variability in the free atmosphere and in forecasts under different synoptic regimes.

Corresponding author address: William C. Skamarock, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. Email: skamaroc@ucar.edu

Abstract

Kinetic energy spectra derived from observations in the free atmosphere possess a wavenumber dependence of k−3 for large scales, characteristic of 2D turbulence, and transition to a k−5/3 dependence in the mesoscale. Kinetic energy spectra computed using mesoscale and experimental near-cloud-scale NWP forecasts from the Weather Research and Forecast (WRF) model are examined, and it is found that the model-derived spectra match the observational spectra well, including the transition. The model spectra decay at the highest resolved wavenumbers compared with observations, indicating energy removal by the model's dissipation mechanisms. This departure from the observed spectra is used to define the model's effective resolution. Various dissipation mechanisms used in NWP models are tested in WRF model simulations to examine the mechanisms' impact on a model's effective resolution. The spinup of the spectra in forecasts is also explored, along with spectra variability in the free atmosphere and in forecasts under different synoptic regimes.

Corresponding author address: William C. Skamarock, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. Email: skamaroc@ucar.edu

Save
  • Balmino, G., 1993: The spectra of the topography of the Earth, Venus and Mars. Geophys. Res. Lett, 20 , 10631066.

  • Boer, G. J., and T. G. Shepherd, 1983: Large-scale two-dimensional turbulence in the atmosphere. J. Atmos. Sci, 40 , 164184.

  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev, 131 , 23942416.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci, 28 , 10871095.

  • Cho, J. Y. N., R. Newell, and J. D. Barrick, 1999a: Horizontal wavenumber spectra of winds, temperature, and trace gases during the Pacific Exploratory Missions: 2. Gravity waves, quasi-two-dimensional turbulence, and vortical modes. J. Geophys. Res, 104 , 1629716308.

    • Search Google Scholar
    • Export Citation
  • Cho, J. Y. N., and Coauthors, 1999b: Horizontal wavenumber spectra of winds, temperature, and trace gases during the Pacific Exploratory Missions: 1. Climatology. J. Geophys. Res, 104 , 56975716.

    • Search Google Scholar
    • Export Citation
  • Davis, C., and Coauthors, 2004: The bow echo and MCV experiment: Observations and opportunities. Bull. Amer. Meteor. Soc, 85 , 10751093.

    • Search Google Scholar
    • Export Citation
  • Denis, B., J. Côté, and R. Laprise, 2002: Spectral decomposition of two-dimensional atmospheric fields on limited-area domains using the Discrete Cosine Transform (DCT). Mon. Wea. Rev, 130 , 18121829.

    • Search Google Scholar
    • Export Citation
  • Dewan, E. M., 1979: Stratospheric spectra resembling turbulence. Science, 402 , 832835.

  • Done, J., C. Davis, and M. Weisman, 2004: The next generation of NWP: Explicit forecasts of convection using the Weather Research and Forecast (WRF) model. Atmos. Sci. Lett., in press.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State/NCAR Mesoscale Model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev, 121 , 14931513.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., 1985: Spectra computed from a limited area grid. Mon. Wea. Rev, 113 , 15541562.

  • Gage, K. S., 1979: Evidence for a k−5/3 law inertial range in mesoscale two-dimensional turbulence. J. Atmos. Sci, 36 , 19501954.

  • Hodur, R. M., 1997: The Naval Research Laboratory's Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev, 125 , 14141430.

    • Search Google Scholar
    • Export Citation
  • Janjic, Z. I., 2003: A nonhydrostatic model based on a new approach. Meteor. Atmos. Phys, 82 , 271285.

  • Koshyk, J. N., and K. Hamilton, 2001: The horizontal kinetical energy spectrum and spectral budget simulated by a high-resolution troposphere–stratosphere–mesosphere GCM. J. Atmos. Sci, 58 , 329348.

    • Search Google Scholar
    • Export Citation
  • Kraichnan, R. H., 1967: Inertial ranges in two-dimensional turbulence. Phys. Fluids, 10 , 14171423.

  • Laursen, L., and E. Eliasen, 1989: On the effects of the damping mechanisms in an atmospheric general circulation model. Tellus, 41A , 385400.

    • Search Google Scholar
    • Export Citation
  • Lean, H. W., and P. A. Clark, 2003: The effects of changing resolution on mesoscale modelling of line convection and slantwise circulations in FASTEX IOP16. Quart. J. Roy. Meteor. Soc, 129 , 22552278.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1969: Numerical simulation of two-dimensional turbulence. Phys. Fluids, 12 , (Suppl. II),. 240249.

  • Lilly, D. K., 1983: Stratified turbulence and the mesoscale variability of the atmosphere. J. Atmos. Sci, 40 , 749761.

  • Lilly, D. K., and E. Peterson, 1983: Aircraft measurements of atmospheric energy spectra. Tellus, 35A , 379382.

  • Lilly, D. K., G. Bassett, K. Droegemeier, and P. Bartello, 1998: Stratified turbulence in the atmospheric mesoscales. Theor. Comput. Fluid Dyn, 11 , 139153.

    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 1999: Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? J. Fluid Mech, 388 , 259288.

    • Search Google Scholar
    • Export Citation
  • Lindborg, E., and J. Y. N. Cho, 2001: Horizontal velocity structure functions in the upper troposphere and lower stratosphere: 2. Theoretical considerations. J. Geophys. Res, 106 , 1023310242.

    • Search Google Scholar
    • Export Citation
  • Michalakes, J., S. Chen, J. Dudhia, L. Hart, J. Klemp, J. Middlecoff, and W. Skamarock, 2001: Development of a next generation regional weather research and forecast model. Developments in Teracomputing: Proceedings of the Ninth ECMWF Workshop on the Use of High Performance Computing in Meteorology, W. Zwieflhofer and N. Kreitz, Eds., World Scientific, 269–276.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci, 42 , 950960.

    • Search Google Scholar
    • Export Citation
  • Otte, M. J., and J. C. Wyngaard, 2001: Stably stratified interfacial-layer turbulence from large-eddy simulation. J. Atmos. Sci, 58 , 34243442.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, and J. Dudhia, 2001: Prototypes for the WRF (Weather Research and Forecasting) model. Preprints, Ninth Conf. on Mesoscale Processes, Fort Lauderdale, FL, Amer. Meteor. Soc., J11–J15.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., W. C. Skamarock, and R. Rotunno, 1993: Frontal dynamics near and following frontal collapse. J. Atmos. Sci, 50 , 31943212.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., G. J. Schutts, and M. E. B. Gray, 1997: Balanced mesoscale motion and stratified turbulence forced by convection. Quart. J. Roy. Meteor. Soc, 123 , 16211652.

    • Search Google Scholar
    • Export Citation
  • VanZandt, T. E., 1982: A universal spectrum of buoyancy in the atmosphere. Geophys. Res. Lett, 9 , 575578.

  • Vinnichenko, N. K., 1970: The kinetic energy spectrum in the free atmosphere—1 second to 5 years. Tellus, 22 , 158166.

  • Wicker, L. J., and W. C. Skamarock, 2002: Time splitting methods for elastic models using forward time schemes. Mon. Wea. Rev, 130 , 20882097.

    • Search Google Scholar
    • Export Citation
  • Xue, M., D-H. Wang, J-D. Gao, K. Brewster, and K. K. Droegemeier, 2003: The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation. Meteor. Atmos. Phys, 82 , 139170.

    • Search Google Scholar
    • Export Citation
  • Yuan, L., and K. Hamilton, 1994: Equilibrium dynamics in a forced-dissipative f-plane shallow-water system. J. Fluid Mech, 280 , 369394.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5137 1412 172
PDF Downloads 4165 895 70