Model Study of Evolution and Diurnal Variations of Rainfall in the North American Monsoon during June and July 2002

J. Li Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

Search for other papers by J. Li in
Current site
Google Scholar
PubMed
Close
,
X. Gao Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

Search for other papers by X. Gao in
Current site
Google Scholar
PubMed
Close
,
R. A. Maddox Department of Atmospheric Science, The University of Arizona, Tucson, Arizona

Search for other papers by R. A. Maddox in
Current site
Google Scholar
PubMed
Close
, and
S. Sorooshian Department of Civil and Environmental Engineering, University of California, Irvine, California

Search for other papers by S. Sorooshian in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Rainfall evolution and diurnal variation are important components in the North American monsoon system (NAMS). In this study these components are numerically studied using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) with high resolution (12-km grids) in contrast to most previous model studies that used relatively coarse spatial resolutions (>25 km grids). The model was initialized at the start of each month and allowed to run for 31 days.

The study shows that, in general, the model results broadly matched the patterns of satellite-retrieved rainfall data for monthly rainfall accumulation. The rainfall timing evolution in the monsoon core region predicted by the model generally matched the gauge observations. However, the differences among the three precipitation estimates (model, satellite, and gauge) are obvious, especially in July. The rainfall diurnal cycle pattern was reproduced in the monsoon core region of western Mexico, but there were differences in the diurnal intensity and timing between modeled and observed results. Furthermore, the model cannot capture the diurnal variation over Arizona.

Modeling results showed heavy monsoon rains shift northward along the western Mexico coast in association with the northward evolution of the subtropical highs. This is consistent with previous data analyses. The rainfall diurnal cycle was associated mainly with sea–land/mountain–valley circulations over western Mexico and adjacent oceans.

The simulations show that the model has deficiencies in predicting precipitation over the Gulf of Mexico. The model cannot reproduce the low-level inversion above the marine boundary layers and thus does not generate enough convective inhibition (CIN) to suppress the convection. The model also cannot produce realistic variations of day-to-day atmospheric conditions with only a single initialization at the start of the month.

Corresponding author address: Jialun Li, Department of Civil and Environmental Engineering, University of California, Irvine, E-4130 Engineering Gateway, Irvine, CA 92697-2175. Email: jialunl@uci.edu

Abstract

Rainfall evolution and diurnal variation are important components in the North American monsoon system (NAMS). In this study these components are numerically studied using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) with high resolution (12-km grids) in contrast to most previous model studies that used relatively coarse spatial resolutions (>25 km grids). The model was initialized at the start of each month and allowed to run for 31 days.

The study shows that, in general, the model results broadly matched the patterns of satellite-retrieved rainfall data for monthly rainfall accumulation. The rainfall timing evolution in the monsoon core region predicted by the model generally matched the gauge observations. However, the differences among the three precipitation estimates (model, satellite, and gauge) are obvious, especially in July. The rainfall diurnal cycle pattern was reproduced in the monsoon core region of western Mexico, but there were differences in the diurnal intensity and timing between modeled and observed results. Furthermore, the model cannot capture the diurnal variation over Arizona.

Modeling results showed heavy monsoon rains shift northward along the western Mexico coast in association with the northward evolution of the subtropical highs. This is consistent with previous data analyses. The rainfall diurnal cycle was associated mainly with sea–land/mountain–valley circulations over western Mexico and adjacent oceans.

The simulations show that the model has deficiencies in predicting precipitation over the Gulf of Mexico. The model cannot reproduce the low-level inversion above the marine boundary layers and thus does not generate enough convective inhibition (CIN) to suppress the convection. The model also cannot produce realistic variations of day-to-day atmospheric conditions with only a single initialization at the start of the month.

Corresponding author address: Jialun Li, Department of Civil and Environmental Engineering, University of California, Irvine, E-4130 Engineering Gateway, Irvine, CA 92697-2175. Email: jialunl@uci.edu

Save
  • Adams, D. K., and A. C. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc, 78 , 21972213.

  • Anderson, B. T., and J. O. Roads, 2002: Regional simulation of summertime precipitation over the southwestern United States. J. Climate, 15 , 33213342.

    • Search Google Scholar
    • Export Citation
  • Anderson, B. T., J. O. Roads, S-C. Chen, and H-M. H. Juang, 2001: Model dynamics of summertime low-level jets over northwestern Mexico. J. Geophys. Res, 106 (D4) 34013413.

    • Search Google Scholar
    • Export Citation
  • Balling Jr., R. C., and S. W. Brazel, 1987: Diurnal variation in Arizona monsoon precipitation frequencies. Mon. Wea. Rev, 115 , 342346.

    • Search Google Scholar
    • Export Citation
  • Barlow, M., S. Nigam, and E. H. Berbery, 1998: Evolution of the North American monsoon system. J. Climate, 11 , 22382257.

  • Berbery, E. H., 2001: Mesoscale moisture analysis of the North American monsoon. J. Climate, 14 , 121137.

  • Bryson, R. A., and W. P. Lowery, 1955: Synoptic climatology of the Arizona summer precipitation singularity. Bull. Amer. Meteor. Soc, 36 , 329379.

    • Search Google Scholar
    • Export Citation
  • Carleton, A. M., 1986: Synoptic-dynamic character of “bursts” and “breaks” in the southwest U.S. summer precipitation singularity. J. Climatol, 6 , 605623.

    • Search Google Scholar
    • Export Citation
  • Cavazos, T., A. C. Comrie, and D. M. Liverman, 2002: Intraseasonal variability associated with wet monsoons in southeast Arizona. J. Climate, 15 , 24772490.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev, 129 , 569585.

    • Search Google Scholar
    • Export Citation
  • Dai, A., F. Giorgi, and K. E. Trenberth, 1999: Observed and model-simulated diurnal cycles of precipitation over the contiguous United States. J. Geophys. Res, 104 (D6) 63776402.

    • Search Google Scholar
    • Export Citation
  • Douglas, M. W., and S. Li, 1996: Diurnal variation of the lower-tropospheric flow over the Arizona low desert from SWAMP-1993 observations. Mon. Wea. Rev, 124 , 12111235.

    • Search Google Scholar
    • Export Citation
  • Douglas, M. W., R. A. Maddox, K. Howard, and S. Reyes, 1993: The Mexican monsoon. J. Climate, 6 , 16651677.

  • Douglas, M. W., A. Valdez-Manzanila, and R. G. Cueta, 1998: Diurnal variation and horizontal extent of the low-level jet over the northern Gulf of California. Mon. Wea. Rev, 126 , 20172025.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci, 46 , 30773107.

    • Search Google Scholar
    • Export Citation
  • Gao, X., S. Sorooshian, J. Li, and J. Xu, 2003: SST data improve modeling of North American monsoon rainfall. Eos, Trans. Amer. Geophys. Union, 84 , P457,. P462.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and J. M. Wallace, 1997: The diurnal march of convective cloudiness over the Americas. Mon. Wea. Rev, 125 , 31573171.

    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., W. J. Shuttleworth, and Z-L. Yang, 2002: Sensitivity of the modeled North American monsoon regional climate to convective parameterization. Mon. Wea. Rev, 130 , 12821298.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev, 121 , 764787.

  • Guichard, F., D. B. Parsons, J. Dudhia, and J. Bresch, 2003: Evaluating mesoscale model predictions of clouds and radiation with SGP ARM data over a seasonal timescale. Mon. Wea. Rev, 131 , 926944.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., and W. Shi, 2001: Intercomparison of the principal modes of interannual and intraseasonal variability of the North American monsoon system. J. Climate, 14 , 403417.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Yao, and X. L. Wang, 1997: Influence of the North American monsoon system on the U.S. summer precipitation regime. J. Climate, 10 , 26002622.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Chen, and A. V. Douglas, 1999: Interannual variability of the North American warm season precipitation regions. J. Climate, 12 , 653680.

    • Search Google Scholar
    • Export Citation
  • Hong, S-Y., and H-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev, 124 , 23222339.

    • Search Google Scholar
    • Export Citation
  • Hsu, K. L., X. Gao, S. Sorooshian, and H. V. Gupta, 1997: Precipitation estimates from remotely sensed information using artificial neural networks. J. Appl. Meteor, 36 , 11761190.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12 , 23972418.

    • Search Google Scholar
    • Export Citation
  • Jolliffe, I. T., and D. B. Stephenson, Eds.,. 2003: Forecast Verification: A Practitioner's Guide in Atmospheric Science. Wiley and Sons, 240 pp.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., D. Ivanova, R. Rabin, T. J. Brown, and K. Redmond, 2002: Gulf of California sea surface temperatures and the North American monsoon: Mechanistic implications from observations. J. Climate, 15 , 22612281.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and H. M. H. Juang, 2003: Influence of sea surface temperature anomalies in the Gulf of California on North American monsoon rainfall. J. Geophys. Res.,108, 4112, doi:10.1029/ 2002JD002403.

    • Search Google Scholar
    • Export Citation
  • Negri, A. J., R. F. Adler, R. A. Maddox, K. W. Howard, and P. R. Keehn, 1993: A regional rainfall climatology over Mexico and the southwest United States derived from passive microwave and geosynchronous infrared data. J. Climate, 6 , 21442161.

    • Search Google Scholar
    • Export Citation
  • Negri, A. J., R. F. Adler, E. J. Nelkin, and G. J. Huffman, 1994: Regional rainfall climatologies derived from Special Sensor Microwave Imager (SSM/I) data. Bull. Amer. Meteor. Soc, 75 , 11651182.

    • Search Google Scholar
    • Export Citation
  • Reiter, E. R., and M. Tang, 1984: Plateau effects on diurnal circulation patterns. Mon. Wea. Rev, 112 , 638651.

  • Sorooshian, S., K. L. Hsu, X. Gao, H. V. Gupta, B. Iman, and D. Braithwaite, 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc, 81 , 20352046.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., X. Gao, K. Hsu, R. A. Maddox, Y. Hong, H. V. Gupta, and B. Iman, 2002: Diurnal variability of tropical rainfall retrieved from combined GOES and TRMM satellite information. J. Climate, 15 , 9831001.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., R. L. Gall, S. L. Mullen, and K. W. Howard, 1995: Model climatology of the Mexican monsoon. J. Climate, 8 , 17751794.

    • Search Google Scholar
    • Export Citation
  • Wang, W., and N. L. Seaman, 1997: A comparison study of convective parameterization schemes in a mesoscale model. Mon. Wea. Rev, 125 , 252278.

    • Search Google Scholar
    • Export Citation
  • Warner, T. T., and H-M. Hsu, 2000: Nested-model simulation of moist convection: The impact of coarse-grid parameterized convection on fine-grid resolved convection. Mon. Wea. Rev, 128 , 22112231.

    • Search Google Scholar
    • Export Citation
  • Wilson, C. A., and J. F. B. Mitchell, 1986: Diurnal variation and cloud in a general circulation model. Quart. J. Roy. Meteor. Soc, 112 , 347369.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 268 141 32
PDF Downloads 81 40 4