A Study of Convection Initiation in a Mesoscale Model Using High-Resolution Land Surface Initial Conditions

Stanley B. Trier National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Stanley B. Trier in
Current site
Google Scholar
PubMed
Close
,
Fei Chen National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Fei Chen in
Current site
Google Scholar
PubMed
Close
, and
Kevin W. Manning National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Kevin W. Manning in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A coupled convection-resolving mesoscale atmosphere–land surface model (LSM) is used to investigate land surface–planetary boundary layer (PBL) interactions responsible for the initiation of deep, moist convection over the southern Great Plains of the United States on 19 June 1998. A high-resolution land data assimilation system provides initial conditions to the LSM, facilitating examination of soil moisture effects on forecasts of deep convection.

During the late morning and early afternoon, the southwestern portion of a simulated southwest–northeast (SW–NE)-oriented surface water vapor gradient zone evolves into an intense dryline, unlike the northeastern portion, which remains relatively weak. Despite these regional differences, midafternoon convection initiation occurs within a ∼100-km-wide region of enhanced PBL depth along much of the SW–NE extent of the water vapor gradient zone. The afternoon PBL depth maximum results from a midmorning-to-early afternoon surface sensible heat flux maximum of similar horizontal scale, and is reinforced by an ensuing mesoscale (L ∼ 100 km) vertical circulation. Finescale (L ∼ 10 km) PBL circulations that directly trigger deep convection are confined within this mesoscale region that contains the deeper and more unstable PBL.

Comparisons among different simulations reveal that thermodynamic stability and simulated convection initiation are affected by details in the initial soil moisture distribution, through differences in the partitioning of the surface heat and moisture fluxes. These differences in convection initiation among simulations occur despite only minor differences in the overall structure of the afternoon surface moisture gradient zone, which has potentially important implications for operational forecasts of deep convection.

Corresponding author address: Dr. Stanley B. Trier, NCAR/MMM, P.O. Box 3000, Boulder, CO 80307-3000. Email: trier@ucar.edu

Abstract

A coupled convection-resolving mesoscale atmosphere–land surface model (LSM) is used to investigate land surface–planetary boundary layer (PBL) interactions responsible for the initiation of deep, moist convection over the southern Great Plains of the United States on 19 June 1998. A high-resolution land data assimilation system provides initial conditions to the LSM, facilitating examination of soil moisture effects on forecasts of deep convection.

During the late morning and early afternoon, the southwestern portion of a simulated southwest–northeast (SW–NE)-oriented surface water vapor gradient zone evolves into an intense dryline, unlike the northeastern portion, which remains relatively weak. Despite these regional differences, midafternoon convection initiation occurs within a ∼100-km-wide region of enhanced PBL depth along much of the SW–NE extent of the water vapor gradient zone. The afternoon PBL depth maximum results from a midmorning-to-early afternoon surface sensible heat flux maximum of similar horizontal scale, and is reinforced by an ensuing mesoscale (L ∼ 100 km) vertical circulation. Finescale (L ∼ 10 km) PBL circulations that directly trigger deep convection are confined within this mesoscale region that contains the deeper and more unstable PBL.

Comparisons among different simulations reveal that thermodynamic stability and simulated convection initiation are affected by details in the initial soil moisture distribution, through differences in the partitioning of the surface heat and moisture fluxes. These differences in convection initiation among simulations occur despite only minor differences in the overall structure of the afternoon surface moisture gradient zone, which has potentially important implications for operational forecasts of deep convection.

Corresponding author address: Dr. Stanley B. Trier, NCAR/MMM, P.O. Box 3000, Boulder, CO 80307-3000. Email: trier@ucar.edu

Save
  • Anthes, R. A., Y-H. Kuo, S. G. Benjamin, and Y-F. Li, 1982: The evolution of the mesoscale environment of severe local storms: Preliminary modeling results. Mon. Wea. Rev, 110 , 11851213.

    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., R. M. Wakimoto, and C. L. Ziegler, 1998: Observations of finescale structure of a dryline during VORTEX 95. Mon. Wea. Rev, 126 , 525550.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., 1986: Some effects of surface heating and topography on the regional severe storm environment. Part II: Two-dimensional idealized experiments. Mon. Wea. Rev, 114 , 330343.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and T. N. Carlson, 1986: Some effects of surface heating and topography on the regional severe storm environment. Part I: Three-dimensional simulations. Mon. Wea. Rev, 114 , 307329.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., G. A. Grell, J. M. Brown, and T. G. Smirnova, 2004a: Mesoscale weather prediction with the RUC hybrid isentropic–terrain-following coordinate model. Mon. Wea. Rev, 132 , 473494.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2004b: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev, 132 , 495518.

  • Brock, F. V., K. C. Crawford, R. L. Elliott, G. W. Cuperus, S. J. Stadler, H. L. Johnson, and M. D. Eilts, 1995: The Oklahoma Mesonet: A technical overview. J. Atmos. Oceanic Technol, 12 , 519.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface– hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev, 129 , 569585.

    • Search Google Scholar
    • Export Citation
  • Chen, F., Z. Janjic, and K. Mitchell, 1997: Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale ETA model. Bound.-Layer Meteor, 70 , 391421.

    • Search Google Scholar
    • Export Citation
  • Chen, F., T. T. Warner, and K. Manning, 2001: Sensitivity of orographic moist convection to landscape variability: A study of the Buffalo Creek, Colorado, flash flood case of 1996. J. Atmos. Sci, 58 , 32043223.

    • Search Google Scholar
    • Export Citation
  • Chen, F., K. W. Manning, D. N. Yates, M. A. LeMone, S. B. Trier, R. Cuenca, and D. Niyogi, 2004: Development of a High Resolution Land Data Assimilation System (HRLDAS). Preprints, 16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., CD-ROM, 22.3.

    • Search Google Scholar
    • Export Citation
  • Colby Jr., F. P., 1984: Convective inhibition as a predictor of convection during AVE-SESAME II. Mon. Wea. Rev, 112 , 22392252.

  • Doswell III, C. A., and E. N. Rasmussen, 1994: The effect of neglecting the virtual temperature correction on CAPE calculations. Wea. Forecasting, 9 , 625629.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci, 46 , 30773107.

    • Search Google Scholar
    • Export Citation
  • Etling, D., and R. A. Brown, 1993: Roll vortices in the planetary boundary layer: A review. Bound.-Layer Meteor, 65 , 215248.

  • Findell, K. L., and E. A. B. Eltahir, 2003: Atmospheric controls on soil moisture–boundary layer interactions. Part II: Feedbacks within the continental United States. J. Hydrometeor, 4 , 570583.

    • Search Google Scholar
    • Export Citation
  • Fulton, R. A., J. P. Breidenbach, D-J. Seo, D. A. Miller, and T. O'Bannon, 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13 , 377395.

    • Search Google Scholar
    • Export Citation
  • Grasso, L. D., 2000: A numerical simulation of dryline sensitivity to soil moisture. Mon. Wea. Rev, 128 , 28162834.

  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev, 121 , 764787.

  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth generation Penn State/NCAR mesoscale model (MM5). NCAR Tech. Note NCAR/TN 398+STR, 138 pp.

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., H. B. Bluestein, T. M. Crawford, M. E. Baldwin, and R. M. Rabin, 1997: Severe thunderstorm development in relation to along-dryline variability: A case study. Mon. Wea. Rev, 125 , 231251.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1992: An Introduction to Dynamic Meteorology. 3d ed. Academic Press, 511 pp.

  • Jacquemin, B., and J. Noilhan, 1990: Sensitivity study and validation of a land surface parameterization using the HAPEX-MOBILHY data set. Bound.-Layer Meteor, 52 , 93124.

    • Search Google Scholar
    • Export Citation
  • Janjic, Z. I., 1990: The step-mountain coordinate: Physical package. Mon. Wea. Rev, 118 , 14291443.

  • Janjic, Z. I., 1994: The step-mountain eta coordinate: Further development of the convection, viscous sublayer, and turbulent closure schemes. Mon. Wea. Rev, 122 , 927945.

    • Search Google Scholar
    • Export Citation
  • Lanicci, J. M., T. N. Carlson, and T. T. Warner, 1987: Sensitivity of the Great Plains severe-storm environment to soil moisture distribution. Mon. Wea. Rev, 115 , 26602673.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., 1973: The structure and dynamics of horizontal roll vortices in the planetary boundary layer. J. Atmos. Sci, 30 , 10771091.

    • Search Google Scholar
    • Export Citation
  • McCarthy, J., and S. E. Koch, 1982: The evolution of an Oklahoma dryline. Part I: A meso- and subsynoptic-scale analysis. J. Atmos. Sci, 39 , 225236.

    • Search Google Scholar
    • Export Citation
  • McGinley, J., 1986: Nowcasting mesoscale phenomena. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 657–688.

    • Search Google Scholar
    • Export Citation
  • McGuire, E. L., 1962: The vertical structure of three drylines as revealed by aircraft traverses. National Severe Storms Project Rep. 7.

    • Search Google Scholar
    • Export Citation
  • Miller, J. A., T. A. Kovacs, and P. R. Bannon, 2001: A shallow water model of the diurnal dryline. J. Atmos. Sci, 58 , 35083524.

  • Ogura, Y., and Y. L. Chen, 1977: Life history of an intense mesoscale convective storm in Oklahoma. J. Atmos. Sci, 34 , 14581476.

  • Pan, H-L., and L. Mahrt, 1987: Interaction between soil hydrology and boundary-layer development. Bound.-Layer Meteor, 38 , 185202.

  • Parsons, D. B., M. A. Shapiro, R. M. Hardesty, R. J. Zamora, and J. M. Intrieri, 1991: The fine-scale structure of a west Texas dryline. Mon. Wea. Rev, 119 , 12421258.

    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., M. A. Shapiro, and E. Miller, 2000: The mesoscale structure of a nocturnal dryline and of a frontal–dryline merger. Mon. Wea. Rev, 128 , 38243838.

    • Search Google Scholar
    • Export Citation
  • Peckham, S. E., and L. J. Wicker, 2000: The influence of topography and lower-tropospheric winds on dryline morphology. Mon. Wea. Rev, 128 , 21652189.

    • Search Google Scholar
    • Export Citation
  • Pielke Sr., R. A., 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys, 39 , 151177.

    • Search Google Scholar
    • Export Citation
  • Pielke Sr., R. A., and M. Segal, 1986: Mesoscale circulations forced by differential terrain heating. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 516–548.

    • Search Google Scholar
    • Export Citation
  • Pinker, R. T., I. Laszlo, J. D. Tarpley, and K. Mitchell, 2002: Geostationary satellite products for surface energy balance models. Adv. Space Res, 30 , 24272432.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. J. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc, 124B , 10711107.

    • Search Google Scholar
    • Export Citation
  • Rhea, J. O., 1966: A study of thunderstorm formation along dry lines. J. Appl. Meteor, 5 , 5883.

  • Schaake, J. C., V. I. Koren, Q. Y. Duan, K. Mitchell, and F. Chen, 1996: A simple water balance runoff model (SWB) for estimating runoff at different spatial and temporal scales. J. Geophys. Res, 101 , 74617475.

    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1974: A simulative model of dryline motion. J. Atmos. Sci, 31 , 956964.

  • Segal, M., and R. W. Arritt, 1992: Nonclassical mesoscale circulations caused by sensible heat-flux gradients. Bull. Amer. Meteor. Soc, 73 , 15931604.

    • Search Google Scholar
    • Export Citation
  • Shaw, B. L., R. A. Pielke, and C. L. Ziegler, 1997: A three-dimensional simulation of a Great Plains dryline. Mon. Wea. Rev, 125 , 14891506.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Sun, W-Y., and Y. Ogura, 1979: Boundary-layer forcing as a possible trigger to squall-line formation. J. Atmos. Sci, 36 , 235254.

  • Sun, W-Y., and C-C. Wu, 1992: Formation and diurnal variation of the dryline. J. Atmos. Sci, 49 , 16061619.

  • Weckwerth, T. M., J. W. Wilson, and R. M. Wakimoto, 1996: Thermodynamic variability within the convective boundary layer due to horizontal convective rolls. Mon. Wea. Rev, 124 , 769784.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and Coauthors, 2004: Overview of the International H2O Project (IHOP 2002) and some preliminary highlights. Bull. Amer. Meteor. Soc, 85 , 253277.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., and E. N. Rasmussen, 1998: The initiation of moist convection at the dryline: Forecasting issues from a case study perspective. Wea. Forecasting, 13 , 11061131.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., W. J. Martin, R. A. Pielke, and R. L. Walko, 1995: A modeling study of the dryline. J. Atmos. Sci, 52 , 263285.

  • Ziegler, C. L., T. J. Lee, and R. A. Pielke, 1997: Convective initiation at the dryline: A modeling study. Mon. Wea. Rev, 125 , 10011026.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S., 1995: Non-local turbulent transport: Pollution dispersion aspects of coherent structure of convective flows. Air Pollution Theory and Simulation, H. Power, N. Moussiopoulos, and C. A. Brebbia, Eds., Air Pollution III, Vol. I, Computational Mechanics Publications, 53–60.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1061 167 9
PDF Downloads 568 147 13