Large-Scale Meteorology and Deep Convection during TRMM KWAJEX

Adam H. Sobel Department of Applied Physics and Applied Mathematics, and Department of Earth and Environmental Sciences, Columbia University, New York, New York

Search for other papers by Adam H. Sobel in
Current site
Google Scholar
PubMed
Close
,
Sandra E. Yuter Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Sandra E. Yuter in
Current site
Google Scholar
PubMed
Close
,
Christopher S. Bretherton Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Christopher S. Bretherton in
Current site
Google Scholar
PubMed
Close
, and
George N. Kiladis NOAA/Aeronomy Laboratory, Boulder, Colorado

Search for other papers by George N. Kiladis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An overview of the large-scale behavior of the atmosphere during the Tropical Rainfall Measuring Mission (TRMM) Kwajalein Experiment (KWAJEX) is presented. Sounding and ground radar data collected during KWAJEX, and several routinely available datasets including the Geostationary Meteorological Satellite (GMS), NOAA outgoing longwave radiation (OLR), the Special Sensor Microwave Imager (SSM/I), and ECMWF operational analyses are used. One focus is on the dynamical characterization of synoptic-scale systems in the western/central tropical Pacific during KWAJEX, particularly those that produced the largest rainfall at Kwajalein. Another is the local relationships observed on daily time scales among various thermodynamic variables and areal average rain rate. These relationships provide evidence regarding the degree and kind of local thermodynamic control of convection.

Although convection in the Marshall Islands and surrounding regions often appears chaotic when viewed in satellite imagery, the largest rain events at Kwajalein during the experiment were clearly associated with large-scale envelopes of convection, which propagated coherently over several days and thousands of kilometers, had clear signals in the lower-level large-scale wind field, and are classifiable in terms of known wave modes. Spectral filtering identifies mixed Rossby–gravity (MRG) and Kelvin waves prominently in the OLR data. “Tropical depression–type” disturbances are also evident. In some cases multiple wave types may be associated with a single event. Three brief case studies involving different wave types are presented.

Daily-mean sounding data averaged over the five sounding sites show evidence of shallow convective adjustment, in that near-surface moist static energy variations correlate closely with lower-tropospheric temperature. Evidence of thermodynamic control of deep convection on daily time scales is weaker. Upper-tropospheric temperature is weakly correlated with near-surface moist static energy. There are correlations of relative humidity (RH) with deep convection. Significant area-averaged rainfall occurs only above a lower-tropospheric RH threshold of near 80%. Above this threshold there is a weak but significant correlation of further lower-tropospheric RH increases with enhanced rain rate. Upper-tropospheric RH increases more consistently with rain rate. Lag correlations suggest that higher lower-tropospheric RH favors subsequent convection while higher upper-tropospheric RH is a result of previous or current convection. Convective available potential energy and surface wind speed have weak negative and positive relationships to rain rate, respectively. A strong relationship between surface wind speed (a proxy for latent heat flux) and rain rate has been recently observed in the eastern Pacific. It is suggested that in the KWAJEX region, this relationship is weaker because there are strong zonal gradients of vertically integrated water vapor. The strongest surface winds tend to be easterlies, so that strong surface fluxes are accompanied by strong dry-air advection from the east of Kwajalein. These two effects are of opposite sign in the moist static energy budget, reducing the tendency for strong surface fluxes to promote rainfall.

Corresponding author address: Adam H. Sobel, Dept. of Applied Physics and Applied Mathematics, Columbia University, 500 West 120th St., Rm. 217, New York, NY 10027.Email: ahs129@columbia.edu

Abstract

An overview of the large-scale behavior of the atmosphere during the Tropical Rainfall Measuring Mission (TRMM) Kwajalein Experiment (KWAJEX) is presented. Sounding and ground radar data collected during KWAJEX, and several routinely available datasets including the Geostationary Meteorological Satellite (GMS), NOAA outgoing longwave radiation (OLR), the Special Sensor Microwave Imager (SSM/I), and ECMWF operational analyses are used. One focus is on the dynamical characterization of synoptic-scale systems in the western/central tropical Pacific during KWAJEX, particularly those that produced the largest rainfall at Kwajalein. Another is the local relationships observed on daily time scales among various thermodynamic variables and areal average rain rate. These relationships provide evidence regarding the degree and kind of local thermodynamic control of convection.

Although convection in the Marshall Islands and surrounding regions often appears chaotic when viewed in satellite imagery, the largest rain events at Kwajalein during the experiment were clearly associated with large-scale envelopes of convection, which propagated coherently over several days and thousands of kilometers, had clear signals in the lower-level large-scale wind field, and are classifiable in terms of known wave modes. Spectral filtering identifies mixed Rossby–gravity (MRG) and Kelvin waves prominently in the OLR data. “Tropical depression–type” disturbances are also evident. In some cases multiple wave types may be associated with a single event. Three brief case studies involving different wave types are presented.

Daily-mean sounding data averaged over the five sounding sites show evidence of shallow convective adjustment, in that near-surface moist static energy variations correlate closely with lower-tropospheric temperature. Evidence of thermodynamic control of deep convection on daily time scales is weaker. Upper-tropospheric temperature is weakly correlated with near-surface moist static energy. There are correlations of relative humidity (RH) with deep convection. Significant area-averaged rainfall occurs only above a lower-tropospheric RH threshold of near 80%. Above this threshold there is a weak but significant correlation of further lower-tropospheric RH increases with enhanced rain rate. Upper-tropospheric RH increases more consistently with rain rate. Lag correlations suggest that higher lower-tropospheric RH favors subsequent convection while higher upper-tropospheric RH is a result of previous or current convection. Convective available potential energy and surface wind speed have weak negative and positive relationships to rain rate, respectively. A strong relationship between surface wind speed (a proxy for latent heat flux) and rain rate has been recently observed in the eastern Pacific. It is suggested that in the KWAJEX region, this relationship is weaker because there are strong zonal gradients of vertically integrated water vapor. The strongest surface winds tend to be easterlies, so that strong surface fluxes are accompanied by strong dry-air advection from the east of Kwajalein. These two effects are of opposite sign in the moist static energy budget, reducing the tendency for strong surface fluxes to promote rainfall.

Corresponding author address: Adam H. Sobel, Dept. of Applied Physics and Applied Mathematics, Columbia University, 500 West 120th St., Rm. 217, New York, NY 10027.Email: ahs129@columbia.edu

Save
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31 , 674701.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX, and arctic air-mass data jets. Quart. J. Roy. Meteor. Soc., 112 , 693709.

    • Search Google Scholar
    • Export Citation
  • Brown, R. G., and C. S. Bretherton, 1997: A test of the strict quasi-equilibrium theory on long space and time scales. J. Atmos. Sci., 54 , 624638.

    • Search Google Scholar
    • Export Citation
  • Brown, R. G., and C. Zhang, 1997: Variability of midtropospheric moisture and its effect on cloud-top height distribution during TOGA COARE. J. Atmos. Sci., 54 , 27602774.

    • Search Google Scholar
    • Export Citation
  • Chang, C-P., J. M. Chen, P. A. Harr, and L. E. Carr, 1996: Northwestward-propagating wave patterns over the tropical western North Pacific during summer. Mon. Wea. Rev., 124 , 22452266.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., R. A. Houze, and B. E. Mapes, 1996: Multiscale variability of deep convection in relation to large-scale circulation in TOGA COARE. J. Atmos. Sci., 53 , 13801409.

    • Search Google Scholar
    • Export Citation
  • Davidson, N. E., and H. H. Hendon, 1989: Downstream development in the Southern Hemisphere monsoon during FGGE/WMONEX. Mon. Wea. Rev., 117 , 14581470.

    • Search Google Scholar
    • Export Citation
  • Dickinson, M. J., and J. Molinari, 2002: Mixed Rossby–gravity waves and western Pacific tropical cyclogenesis. Part I: Synoptic evolution. J. Atmos. Sci., 59 , 21832196.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., and M. P. Baldwin, 1995: Observation of 3–6-day meridional wind oscillations over the tropical Pacific, 1973–1992: Horizontal structure and propagation. J. Atmos. Sci., 52 , 15851601.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., and F. X. Crum, 1995: Eastward propagating 2- to 15-day equatorial convection and its relation to the tropical intraseasonal oscillation. J. Geophys. Res., 100 , 2578125790.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: The behavior of a simple hurricane model using a convective scheme based on subcloud-layer entropy equilibrium. J. Atmos. Sci., 52 , 39603968.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120 , 11111143.

    • Search Google Scholar
    • Export Citation
  • Flierl, G. R., M. E. Stern, and J. A. Whitehead Jr., 1983: The physical significance of modons: Laboratory experiments and general integral constraints. Dyn. Atmos. Oceans, 7 , 233263.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1995: Scale interaction in the western Pacific monsoon. Meteor. Atmos. Phys., 56 , 5779.

  • Holton, J. R., 1971: A diagnostic model for equatorial wave disturbances: The role of vertical shear of the mean zonal wind. J. Atmos. Sci., 28 , 5564.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and K. M. Weickmann, 1997: Horizontal structure and seasonality of large-scale circulations associated with submonthly tropical convection. Mon. Wea. Rev., 125 , 19972013.

    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., and R. A. Houze Jr., 1999: Thermodynamic characteristics of air flowing into and out of precipitating convection over the west Pacific warm pool. Quart. J. Roy. Meteor. Soc., 125 , 12091229.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39 , 19651982.

    • Search Google Scholar
    • Export Citation
  • Lau, K-H., and N-C. Lau, 1990: Observed structure and propagation characteristics of tropical summertime synoptic scale disturbances. Mon. Wea. Rev., 118 , 18881913.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and H. H. Hendon, 1990: Synoptic-scale disturbances near the equator. J. Atmos. Sci., 47 , 14631479.

  • Lucas, C., and E. J. Zipser, 2000: Environmental variability during TOGA COARE. J. Atmos. Sci., 57 , 23332350.

  • Mapes, B. E., and R. A. Houze Jr., 1992: An integrated view of the 1987 Australian monsoon and its mesoscale convective systems. Part I: Horizontal structure. Quart. J. Roy. Meteor. Soc., 118 , 927963.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., P. E. Ciesielski, and R. H. Johnson, 2003: Sampling errors in rawinsonde-array budgets. J. Atmos. Sci., 60 , 26972714.

  • McPherson, T., and W. Stapler, 2000: 1999 annual tropical cyclone report. U.S. Naval Pacific Meteorology and Oceanography Center/Joint Typhoon Warning Center, Pearl Harbor, HI, 213 pp.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., P. R. Gent, and N. J. Norton, 1986: The evolution of balanced, low-mode vortices on the β-plane. J. Phys. Oceanogr., 16 , 838855.

    • Search Google Scholar
    • Export Citation
  • Murakami, T., and J. Matsumoto, 1994: Summer monsoon over the Asian continent and western North Pacific. J. Meteor. Soc. Japan, 72 , 719745.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115 , 312.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., and Y. Takayabu, 1985: Global analysis of the lower tropospheric disturbances in the Tropics during the northern summer of the FGGE year. Part II: Regional characteristics of the disturbances. Pure Appl. Geophys., 123 , 272292.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., R. Cifelli, D. J. Boccippio, S. A. Rutledge, and C. Fairall, 2003: Convection and easterly wave structures observed in the eastern Pacific warm pool during EPIC-2001. J. Atmos. Sci., 60 , 17541773.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 1995: Regulation of moist convection over the west Pacific warm pool. J. Atmos. Sci., 52 , 39453959.

  • Raymond, D. J., 2000: The thermodynamic control of tropical rainfall. Quart. J. Roy. Meteor. Soc., 126 , 889898.

  • Raymond, D. J., G. B. Raga, C. S. Bretherton, J. Molinari, C. Lopéz-Carillo, and Ž Fuchs, 2003: Convective forcing in the intertropical convergence zone of the eastern Pacific. J. Atmos. Sci., 60 , 20642082.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., and E. E. Recker, 1971: Structure and properties of synoptic-scale wave disturbances in the equatorial western Pacific. J. Atmos. Sci., 28 , 11171133.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2000: Comparison of radar data from the TRMM satellite and Kwajalein oceanic validation site. J. Appl. Meteor., 39 , 21512164.

    • Search Google Scholar
    • Export Citation
  • Serra, Y. L., and R. A. Houze Jr., 2002: Observations of variability on synoptic timescales in the east Pacific ITCZ. J. Atmos. Sci., 59 , 17231743.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., 1999: Convective precursors and predictability in the tropical western Pacific. Mon. Wea. Rev., 127 , 29772991.

  • Sherwood, S. C., and R. Wahrlich, 1999: Observed evolution of tropical deep convective events and their environment. Mon. Wea. Rev., 127 , 17771795.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and C. S. Bretherton, 1999: Development of synoptic-scale disturbances over the summertime tropical northwest Pacific. J. Atmos. Sci., 56 , 31063127.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and T. Horinouchi, 2000: On the dynamics of easterly waves, monsoon depressions, and tropical depression type disturbances. J. Meteor. Soc. Japan, 78 , 167173.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and C. S. Bretherton, 2003: Large-scale waves interacting with deep convection in idealized mesoscale model simulations. Tellus, 55A , 4560.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2002: Observations of a convectively coupled Kelvin wave in the eastern Pacific ITCZ. J. Atmos. Sci., 59 , 3053.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2003: The observed structure of convectively coupled Kelvin waves: Comparison with simple models of coupled wave instability. J. Atmos. Sci., 60 , 16551668.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., and M. Murakami, 1991: The structure of super cloud clusters observed in 1–20 June 1986 and their relationship to easterly waves. J. Meteor. Soc. Japan, 69 , 105125.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., and T. Nitta, 1993: 3–5 day period disturbances coupled with convection over the tropical Pacific Ocean. J. Meteor. Soc. Japan, 71 , 221246.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. M., S. W. Payne, E. E. Recker, and R. J. Reed, 1979: Structure and properties of synoptic-scale wave disturbances in the intertropical convergence zone of the eastern Atlantic. J. Atmos. Sci., 36 , 5372.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of water vapor. J. Atmos. Sci., 58 , 529545.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and C-P. Chang, 1969: Spectrum analysis of large-scale wave disturbances in the tropical lower troposphere. J. Atmos. Sci., 26 , 10101025.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56 , 374399.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57 , 613640.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and K-M. Lau, 2001: Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific–east Asian monsoons. J. Climate, 14 , 40734090.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3468 3088 62
PDF Downloads 367 97 2