Predictability of Precipitation in a Cloud-Resolving Model

André Walser Institute for Atmospheric and Climate Science, ETH, Zürich, Switzerland

Search for other papers by André Walser in
Current site
Google Scholar
PubMed
Close
,
Daniel Lüthi Institute for Atmospheric and Climate Science, ETH, Zürich, Switzerland

Search for other papers by Daniel Lüthi in
Current site
Google Scholar
PubMed
Close
, and
Christoph Schär Institute for Atmospheric and Climate Science, ETH, Zürich, Switzerland

Search for other papers by Christoph Schär in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An ensemble methodology is developed and tested to objectively isolate and quantify meso-β-scale predictability limitations in numerical weather prediction (NWP). The methodology involves conducting an ensemble of limited-area simulations with slightly modified initial conditions (representing small-scale observational uncertainties) and identical lateral-boundary conditions (representing perfect synoptic-scale predictability). The methodology is applied using a nonhydrostatic NWP model with a convection-resolving mesh size of 3 km, using a setup covering the entire European Alps. The initial perturbations of the ensemble members have a small-scale structure with predominant scales between 10 and 100 km.

Ensembles for four case studies representing different weather conditions are analyzed for 24-h forecasting periods, with particular attention paid to quantitative precipitation forecasting. The simulations show that the predictability of precipitation amounts differs strongly depending upon the weather type and the spatiotemporal scales considered. It is demonstrated that during episodes of convective activity small-scale predictability limitations may be critical even at scales exceeding 100 km. For smaller spatial scales, the uncertainties in precipitation forecasts increase rapidly with decreasing scale as individual convective cells are rendered unpredictable by chaotic aspects of the moist dynamics. However, the results also suggest that the presence of convective activity alone may not necessarily limit predictability. Additional consideration is given to the role of underlying orography, nonlinear processes, and perturbation growth.

Current affiliation: MeteoSwiss, Zürich, Switzerland

Corresponding author address: André Walser, MeteoSwiss, Kraehbuehlstrasse 58, Postfach 514, CH-8044 Zürich, Switzerland. Email: andre.walser@meteoswiss.ch

Abstract

An ensemble methodology is developed and tested to objectively isolate and quantify meso-β-scale predictability limitations in numerical weather prediction (NWP). The methodology involves conducting an ensemble of limited-area simulations with slightly modified initial conditions (representing small-scale observational uncertainties) and identical lateral-boundary conditions (representing perfect synoptic-scale predictability). The methodology is applied using a nonhydrostatic NWP model with a convection-resolving mesh size of 3 km, using a setup covering the entire European Alps. The initial perturbations of the ensemble members have a small-scale structure with predominant scales between 10 and 100 km.

Ensembles for four case studies representing different weather conditions are analyzed for 24-h forecasting periods, with particular attention paid to quantitative precipitation forecasting. The simulations show that the predictability of precipitation amounts differs strongly depending upon the weather type and the spatiotemporal scales considered. It is demonstrated that during episodes of convective activity small-scale predictability limitations may be critical even at scales exceeding 100 km. For smaller spatial scales, the uncertainties in precipitation forecasts increase rapidly with decreasing scale as individual convective cells are rendered unpredictable by chaotic aspects of the moist dynamics. However, the results also suggest that the presence of convective activity alone may not necessarily limit predictability. Additional consideration is given to the role of underlying orography, nonlinear processes, and perturbation growth.

Current affiliation: MeteoSwiss, Zürich, Switzerland

Corresponding author address: André Walser, MeteoSwiss, Kraehbuehlstrasse 58, Postfach 514, CH-8044 Zürich, Switzerland. Email: andre.walser@meteoswiss.ch

Save
  • Benoit, R., J. Côté, and J. Mailhot, 1989: Inclusion of a TKE boundary layer parameterization in the Canadian regional finite-element model. Mon. Wea. Rev., 117 , 17261750.

    • Search Google Scholar
    • Export Citation
  • Benoit, R., M. Desgagné, P. Pellerin, Y. Chartier, and S. Desjardins, 1997: The Canadian MC2: A semi-Lagrangian, semi-implicit wideband atmospheric model suited for finescale process studies and simulations. Mon. Wea. Rev., 125 , 23822415.

    • Search Google Scholar
    • Export Citation
  • Benoit, R., and Coauthors, 2002: The real-time ultrafinescale forecast support during the special observing period of the MAP. Bull. Amer. Meteor. Soc., 83 , 85109.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and Coauthors, 2001: The MAP special observing period. Bull. Amer. Meteor. Soc., 82 , 433462.

  • Brooks, H. E., M. S. Tracton, D. J. Stensrud, G. DiMego, and Z. Toth, 1995: Short-range ensemble forecasting: Report from a workshop, 25–27 July 1994. Bull. Amer. Meteor. Soc., 76 , 16171624.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., and T. N. Palmer, 1995: The singular-vector structure of the atmospheric general circulation. J. Atmos. Sci., 52 , 14341456.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Miller, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125 , 28872908.

    • Search Google Scholar
    • Export Citation
  • Davies, H. C., 1976: A lateral boundary formulation for multi-level prediction models. Quart. J. Roy. Meteor. Soc., 102 , 405418.

  • Droegemeier, K. K., G. Bassett, and M. Xue, 1994: Very high-resolution, uniform-grid simulations of deep convective systems. Preprints, 10th Conf. on Numerical Weather Prediction, Portland, OR, Amer. Meteor. Soc., 376–379.

    • Search Google Scholar
    • Export Citation
  • Du, J., S. L. Mullen, and F. Sanders, 1997: Short range ensemble forecasting of quantitative precipitation. Mon. Wea. Rev., 125 , 24272459.

    • Search Google Scholar
    • Export Citation
  • Ehrendorfer, M., 1997: Predicting the uncertainty of numerical weather forecasts: A review. Meteor. Z., 6 , 147183.

  • Epstein, E. S., 1969: Stochastic dynamic prediction. Tellus, 21 , 739759.

  • Errico, R., and D. P. Baumhefner, 1987: Predictability experiments using a high-resolution limited-area model. Mon. Wea. Rev., 115 , 488504.

    • Search Google Scholar
    • Export Citation
  • Fouquart, Y., and B. Bonnel, 1980: Computations of solar heating of the earth's atmosphere: A new parameterization. Contrib. Atmos. Phys., 53 , 3562.

    • Search Google Scholar
    • Export Citation
  • Frei, C., and C. Schär, 1998: A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int. J. Climatol., 18 , 873900.

    • Search Google Scholar
    • Export Citation
  • Frei, C., and E. Häller, 2001: Mesoscale precipitation analysis from MAP SOP rain-gauge data. MAP Newsletter, No. 15, MeteoSwiss, Zürich, Switzerland,. 257260.

    • Search Google Scholar
    • Export Citation
  • Gal-Chen, T., and R. Somerville, 1975: On the use of a coordinate transformation for the solution of the Navier–Stokes equations. J. Comput. Phys., 17 , 209228.

    • Search Google Scholar
    • Export Citation
  • Garand, L., and J. Mailhot, 1990: The influence of infrared radiation on numerical weather forecasts. Preprints, Seventh Conf. on Atmospheric Radiation, San Francisco, CA, Amer. Meteor. Soc., 146–151.

    • Search Google Scholar
    • Export Citation
  • Grimit, E. P., and C. F. Mass, 2002: Initial results of a mesoscale short-range ensemble forecasting system over the Pacific Northwest. Wea. Forecasting, 17 , 192205.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and S. J. Colucci, 1997: Verification of the Eta–RSM short-range ensemble forecasts. Mon. Wea. Rev., 125 , 13121327.

  • Houtekamer, P. L., L. Lefaivre, J. Derome, J. Ritchie, and H. L. Houtekamer, 1996: A system simulation approach to ensemble prediction. Mon. Wea. Rev., 124 , 12251242.

    • Search Google Scholar
    • Export Citation
  • Jasper, K., and P. Kaufmann, 2003: Coupled runoff simulations as validation tools for atmospheric models at the regional scale. Quart. J. Roy. Meteor. Soc., 129 , 673692.

    • Search Google Scholar
    • Export Citation
  • Kong, F., and M. K. Yau, 1997: An explicit approach to microphysics in MC2. Atmos.–Ocean, 35 , 257291.

  • Kuo, Y. H., M. A. Shapiro, and E. G. Donall, 1991: The interaction between baroclinic and diabatic processes in a numerical simulation of a rapidly intensifying extratropical marine cyclone. Mon. Wea. Rev., 119 , 368384.

    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1974: Theoretical skill of Monte Carlo forecasts. Mon. Wea. Rev., 102 , 409418.

  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20 , 130141.

  • Marsigli, C., A. Montani, F. Nerozzi, T. Paccagnella, S. Tibaldi, F. Molteni, and R. Buizza, 2001: A strategy for high-resolution ensemble prediction. Part II: Limited-area experiments in four Alpine flood events. Quart. J. Roy. Meteor. Soc., 127 , 20952115.

    • Search Google Scholar
    • Export Citation
  • Medina, S., and R. A. Houze, 2003: Air motions and precipitation growth in Alpine storms. Quart. J. Roy. Meteor. Soc., 129 , 345371.

  • Misra, V., M. K. Yau, and N. Badrinath, 2000: Atmospheric water species budget in mesoscale simulations of lee cyclones over the Mackenzie River Basin. Tellus, 52A , 140161.

    • Search Google Scholar
    • Export Citation
  • Molteni, F., and T. N. Palmer, 1993: Predictability and finite time instability of the northern winter circulation. Quart. J. Roy. Meteor. Soc., 119 , 269298.

    • Search Google Scholar
    • Export Citation
  • Molteni, F., F. R. Buizza, T. N. Palmer, and T. Petroliagis, 1996: The ECMWF ensemble prediction system: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122 , 73119.

    • Search Google Scholar
    • Export Citation
  • Mullen, S. L., and D. P. Baumhefner, 1994: Monte Carlo simulations of explosive cyclogenesis. Mon. Wea. Rev., 122 , 15481567.

  • Mullen, S. L., and R. Buizza, 2001: Quantitative precipitation forecasts over the United States by the ECMWF ensemble prediction system. Mon. Wea. Rev., 129 , 638663.

    • Search Google Scholar
    • Export Citation
  • Mullen, S. L., and R. Buizza, 2002: The impact of horizontal resolution and ensemble size on probabilistic forecasts of precipitation by the ECMWF ensemble prediction system. Wea. Forecasting, 17 , 173191.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 2000: Predicting uncertainty in forecasts of weather and climate. Rep. Prog. Phys., 63 , 71116.

  • Rotunno, R., and R. Ferretti, 2003: Comparative analysis of rainfall in MAP cases IOP2b and IOP8. Quart. J. Roy. Meteor. Soc., 129 , 373390.

    • Search Google Scholar
    • Export Citation
  • Schär, C., M. Sprenger, D. Lüthi, Q. Jiang, R. B. Smith, and R. Benoit, 2003: Structure and dynamics of an Alpine potential vorticity banner. Quart. J. Roy. Meteor. Soc., 129 , 825855.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., J. W. Bao, and T. T. Warner, 2000: Using initial conditions and model physics in short-range ensemble simulations of mesoscale convective systems. Mon. Wea. Rev., 128 , 20772107.

    • Search Google Scholar
    • Export Citation
  • Tanguay, M., A. Robert, and R. Laprise, 1990: A semi-implicit semi-Lagrangian fully compressible regional forecast model. Mon. Wea. Rev., 118 , 19701980.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125 , 32973319.

  • Weisman, M. L., W. S. Skamarock, and J. B. Klemp, 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125 , 527548.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., S. Dirren, M. A. Liniger, and M. Zillig, 2002: Dynamical aspects of the life cycle of the winter storm “Lothar” (24–26 December 1999). Quart. J. Roy. Meteor. Soc., 128 , 405429.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4969 4574 517
PDF Downloads 294 72 4