A New Parameterization for Shallow Cumulus Convection and Its Application to Marine Subtropical Cloud-Topped Boundary Layers. Part I: Description and 1D Results

Christopher S. Bretherton Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Christopher S. Bretherton in
Current site
Google Scholar
PubMed
Close
,
James R. McCaa Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by James R. McCaa in
Current site
Google Scholar
PubMed
Close
, and
Hervé Grenier Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Hervé Grenier in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new parameterization of shallow cumulus convection is presented. The parameterization consists of a mass flux scheme based on a buoyancy-sorting, entrainment–detrainment plume model. The mass flux scheme is coupled to a 1.5-order turbulence closure model with an entrainment closure for convective boundary layers. Model performance is verified using single-column-model simulations at relatively high vertical resolution of pure trade-cumulus convection and a cumulus to stratocumulus transition. Mixing rates, cloud cover, and vertical flux profiles, as deduced from previously published large-eddy simulation studies, are well reproduced by the parameterization. The model is used to demonstrate that height variations of lateral mixing rates can be successfully captured by a simple implementation of a buoyancy-sorting mechanism in the updraft cloud model. A companion paper describes the implementation of the scheme in a mesoscale model.

Corresponding author address: Dr. Christopher Bretherton, Dept. of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195-1640. Email: breth@atmos.washington.edu

Abstract

A new parameterization of shallow cumulus convection is presented. The parameterization consists of a mass flux scheme based on a buoyancy-sorting, entrainment–detrainment plume model. The mass flux scheme is coupled to a 1.5-order turbulence closure model with an entrainment closure for convective boundary layers. Model performance is verified using single-column-model simulations at relatively high vertical resolution of pure trade-cumulus convection and a cumulus to stratocumulus transition. Mixing rates, cloud cover, and vertical flux profiles, as deduced from previously published large-eddy simulation studies, are well reproduced by the parameterization. The model is used to demonstrate that height variations of lateral mixing rates can be successfully captured by a simple implementation of a buoyancy-sorting mechanism in the updraft cloud model. A companion paper describes the implementation of the scheme in a mesoscale model.

Corresponding author address: Dr. Christopher Bretherton, Dept. of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195-1640. Email: breth@atmos.washington.edu

Save
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci, 31 , 674701.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., E. Bazile, F. Guichard, P. Mascart, and E. Richard, 2001: A mass-flux convection scheme for regional and global models. Quart. J. Roy. Meteor. Soc, 127 , 869886.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1973: Non-precipitating cumulus convection and its parameterization. Quart. J. Roy. Meteor. Soc, 99 , 178196.

  • Betts, A. K., 1986: New convective adjustment scheme, Pt. 1, Observational and theoretical basis. Quart. J. Roy. Meteor. Soc, 112 , 677691.

    • Search Google Scholar
    • Export Citation
  • Carpenter Jr., R. L., K. K. Droegemeier, and A. A. Blyth, 1998: Entrainment and detrainment in numerically simulated cumulus congestus clouds. Part III: Parcel analysis. J. Atmos. Sci, 55 , 34343455.

    • Search Google Scholar
    • Export Citation
  • Chen, C., and W. R. Cotton, 1987: The physics of the marine stratocumulus-capped mixed layer. J. Atmos. Sci, 44 , 29512977.

  • de Roode, S. R., and C. S. Bretherton, 2003: Mass-flux budgets of shallow cumulus clouds. J. Atmos. Sci, 60 , 137151.

  • Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci, 48 , 23132335.

  • Emanuel, K. A., and D. J. Raymond, 1992: Report from a workshop on cumulus parameterization. Bull. Amer. Meteor. Soc, 73 , 318325.

  • Esbensen, S., 1978: Bulk thermodynamic effects and properties of small tropical cumuli. J. Atmos. Sci, 35 , 826837.

  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air–sea fluxes for Tropical Ocean–Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res, 101 , 37473764.

    • Search Google Scholar
    • Export Citation
  • Galperin, B., L. H. Kantha, S. Hassid, and A. Rosati, 1988: A quasi- equilibrium turbulent energy model for geophysical flows. J. Atmos. Sci, 45 , 5562.

    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., and A. R. Brown, 1999: A similarity hypothesis for shallow-cumulus transports. Quart. J. Roy. Meteor. Soc, 125 , 19131936.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., 2001: Estimation of entrainment rate in simple models of convective clouds. Quart. J. Roy. Meteor. Soc, 127 , 5372.

  • Gregory, D., and P. R. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability- dependent closure. Mon. Wea. Rev, 118 , 14831506.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., R. Kershaw, and P. M. Iness, 1997: Parameterization of momentum transport by convection. Part II: Tests in single-column and general circulation models. Quart. J. Roy. Meteor. Soc, 123 , 11531183.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth generation Penn State/NCAR Mesoscale Model (MM5). National Center for Atmospheric Research Tech. Note NCAR/ TN-398, 80 pp.

    • Search Google Scholar
    • Export Citation
  • Grenier, H., and C. S. Bretherton, 2001: A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Mon. Wea. Rev, 129 , 357377.

    • Search Google Scholar
    • Export Citation
  • Holland, J. Z., and E. M. Rasmusson, 1973: Measurements of the atmospheric mass, energy, and momentum budgets over a 500- kilometer square of tropical ocean. Mon. Wea. Rev, 101 , 4455.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., 1976: Role of convective-scale precipitation downdrafts in cumulus and synoptic-scale interactions. J. Atmos. Sci, 33 , 18901910.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12 , 23972418.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/ detraining plume model and its application in convective parameterization. J. Atmos. Sci, 47 , 27842802.

    • Search Google Scholar
    • Export Citation
  • Krueger, S. K., G. T. McLean, and Q. Fu, 1995: Numerical simulation of the stratus-to-cumulus transition in the subtropical marine boundary layer. Part I: Boundary-layer structure. J. Atmos. Sci, 52 , 28392850.

    • Search Google Scholar
    • Export Citation
  • Krueger, S. K., C-W. Su, and P. A. McMurtry, 1997: Modeling entrainment and finescale mixing in cumulus clouds. J. Atmos. Sci, 54 , 26972712.

    • Search Google Scholar
    • Export Citation
  • Lappen, C. L., and D. A. Randall, 2001: Toward a unified parameterization of the boundary layer and moist convection. Part I: A new type of mass-flux model. J. Atmos. Sci, 58 , 20212036.

    • Search Google Scholar
    • Export Citation
  • Lin, C., 1999: Some bulk properties of cumulus ensembles simulated by a cloud-resolving model. Part I: Cloud root properties. J. Atmos. Sci, 56 , 37243735.

    • Search Google Scholar
    • Export Citation
  • Lin, C., and A. Arakawa, 1997a: The macroscopic entrainment processes of simulated cumulus ensemble. Part I: Entrainment sources. J. Atmos. Sci, 54 , 10271043.

    • Search Google Scholar
    • Export Citation
  • Lin, C., and A. Arakawa, 1997b: The macroscopic entrainment processes of simulated cumulus ensemble. Part II: Testing the entraining- plume model. J. Atmos. Sci, 54 , 10441053.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci, 57 , 15151535.

    • Search Google Scholar
    • Export Citation
  • McCaa, J. R., 2001: A new parameterization of marine stratocumulus and shallow cumulus clouds for climate models. Ph.D. dissertation, University of Washington, 161 pp.

    • Search Google Scholar
    • Export Citation
  • McCaa, J. R., and C. S. Bretherton, 2004: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part II: Regional simulations of marine boundary layer clouds. Mon. Wea. Rev, 132 , 883896.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys, 20 , 851875.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., M. A. LeMone, and G. Sommeria, 1982: Simulation of a fair weather marine boundary layer in GATE using a three- dimensional model. Quart. J. Roy. Meteor. Soc, 108 , 167190.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., and S. Esbensen, 1974: Heat and moisture budget analyses using BOMEX data. Mon. Wea. Rev, 102 , 1728.

  • Norris, J. R., 1999: On trends and possible artifacts in global ocean cloud cover between 1952 and 1995. J. Climate, 12 , 18641870.

  • Paluch, I. R., 1979: Entrainment mechanism in Colorado cumuli. J. Atmos. Sci, 36 , 24672478.

  • Pennell, W. T., and M. A. LeMone, 1974: An experimental study of turbulence structure in the fair-weather trade wind boundary layer. J. Atmos. Sci, 31 , 13081323.

    • Search Google Scholar
    • Export Citation
  • Pielke, and Coauthors, 1992: A comprehensive meteorological modeling system—RAMS. Meteor. Atmos. Phys, 49 , 6991.

  • Raga, G. G., J. B. Jensen, and M. B. Baker, 1990: Characteristics of cumulus band clouds off the coast of Hawaii. J. Atmos. Sci, 47 , 338355.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., 1980: Conditional instability of the first kind upside- down. J. Atmos. Sci, 37 , 125130.

  • Raymond, D. J., and A. M. Blyth, 1986: A stochastic mixing model for nonprecipitating cumulus clouds. J. Atmos. Sci, 43 , 27082718.

  • Reuter, G. W., and M. K. Yau, 1987: Mixing mechanisms in cumulus congestus clouds. Part II: Numerical simulations. J. Atmos. Sci, 44 , 798827.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., 1998: Shallow cumulus convection. Buoyant Convection in Geophysical Flows, E. J. Plate et al., Eds., Kluwer, 441–486.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and J. W. M. Cuijpers, 1995: Evaluation of parametric assumptions for shallow cumulus convection. J. Atmos. Sci, 52 , 650666.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and A. A. M. Holtslag, 1996: Model impacts of entrainment and detrainment rates in shallow cumulus convection. J. Atmos. Sci, 53 , 23542364.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors, 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci, 60 , 12011219.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., and V. Wiggert, 1969: Models of precipitating cumulus towers. Mon. Wea. Rev, 97 , 471489.

  • Stevens, B., 2000: Cloud-transitions and decoupling in shear-free stratocumulus topped boundary layers. Geophys. Res. Lett, 27 , 25572560.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. R., and M. B. Baker, 1991: Entrainment and detrainment in cumulus clouds. J. Atmos. Sci, 48 , 112120.

  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev, 117 , 17791800.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., W. A. Heckley, and J. Slingo, 1988: Tropical forecasting at ECMWF: The influence of physical parameterization on the mean structure of forecasts and analyses. Quart. J. Roy. Meteor. Soc, 114 , 639644.

    • Search Google Scholar
    • Export Citation
  • Telford, J. W., 1975: Turbulence, entrainment, and mixing in cloud dynamics. Pure Appl. Geophys, 113 , 10671084.

  • von Salzen, K., and N. A. McFarlane, 2002: Parameterization of the bulk effects of lateral and cloud-top entrainment in transient shallow cumulus clouds. J. Atmos. Sci, 59 , 14051430.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., C. S. Bretherton, H. A. Rand, and D. E. Stevens, 1997: Numerical simulations and a conceptual model of the stratocumulus to trade cumulus transition. J. Atmos. Sci, 54 , 168192.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budget. J. Atmos. Sci, 30 , 611627.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3241 1100 175
PDF Downloads 987 296 19