Evaluation of a Numerical Weather Forecast Model Using Boundary Layer Cloud-Top Temperature Retrieved from AVHRR

A. Mathieu Centre d'Etudes des Environnements Terrestre et Planétaire, Vélizy, and Laboratoire de Météorologie Dynamique, CNRS, Institute Pierre Simon Laplace, Paris, France

Search for other papers by A. Mathieu in
Current site
Google Scholar
PubMed
Close
,
A. Lahellec Laboratoire de Météorologie Dynamique, CNRS, Institut Pierre Simon Laplace, Paris, France

Search for other papers by A. Lahellec in
Current site
Google Scholar
PubMed
Close
, and
A. Weill Centre d'Etudes des Environnements Terrestre et Planétaire, Vélizy, France

Search for other papers by A. Weill in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study concerns the evaluation of the boundary layer (BL) subgrid parameterization of a numerical weather forecast model on the synoptic scale. The method presented aims at separating the two possible origins of model defficiencies in representing a cloud-topped boundary layer: (i) large-scale data assimilation issues, and (ii) BL parameterization. The method combines two sources of data: model analyzed fields from the SEMAPHORE field experiment, and the Advanced Very High Resolution Radiometer (AVHRR) dataset from the NOAA-11 and -12 Satellite. The application focuses on an anticyclonic period during field experiment (10–17 November 1993), for which a special version of ARPEGE—The Météo-France Numerical Weather Prediction model—is used to analyze the data from the field experiment.

In the proposed method, the boundary layer is globally characterized by its height which is converted to an inversion layer temperature in the model. Low-level cloud-top temperatures of optically thick clouds are inferred from the satellite radiometers. The model and satellite-retrieved temperature fields are two independent fields that are used together to select regions for which spatial variations of boundary layer cloud-top temperature are approximately in phase. These regions are assumed to have correctly assimilated the large-scale data fields. It is found that they cover a significant part of the analyzed synoptic situations. In the selected regions, the two temperature fields can be examined to evaluate BL schemes and obtain insight on the physical processes responsible for cloudiness.

Corresponding author address: Anne Mathieu, Laboratoire de Mé téorologie Dynamique, Ecole Polytechnique, 91128 Palaiseau Cedex, France. Email: amathieu@lmd.polytechnique.fr

Abstract

This study concerns the evaluation of the boundary layer (BL) subgrid parameterization of a numerical weather forecast model on the synoptic scale. The method presented aims at separating the two possible origins of model defficiencies in representing a cloud-topped boundary layer: (i) large-scale data assimilation issues, and (ii) BL parameterization. The method combines two sources of data: model analyzed fields from the SEMAPHORE field experiment, and the Advanced Very High Resolution Radiometer (AVHRR) dataset from the NOAA-11 and -12 Satellite. The application focuses on an anticyclonic period during field experiment (10–17 November 1993), for which a special version of ARPEGE—The Météo-France Numerical Weather Prediction model—is used to analyze the data from the field experiment.

In the proposed method, the boundary layer is globally characterized by its height which is converted to an inversion layer temperature in the model. Low-level cloud-top temperatures of optically thick clouds are inferred from the satellite radiometers. The model and satellite-retrieved temperature fields are two independent fields that are used together to select regions for which spatial variations of boundary layer cloud-top temperature are approximately in phase. These regions are assumed to have correctly assimilated the large-scale data fields. It is found that they cover a significant part of the analyzed synoptic situations. In the selected regions, the two temperature fields can be examined to evaluate BL schemes and obtain insight on the physical processes responsible for cloudiness.

Corresponding author address: Anne Mathieu, Laboratoire de Mé téorologie Dynamique, Ecole Polytechnique, 91128 Palaiseau Cedex, France. Email: amathieu@lmd.polytechnique.fr

Save
  • Antoine, J. Y., M. Derrien, L. Harang, P. L. Borgne, H. L. Glau, and C. L. Goas, 1992: Errors at large satellite zenith angles on AVHRR derived sea surface temperatures. Int. J. Remote Sens, 13 , 17971804.

    • Search Google Scholar
    • Export Citation
  • Atkinson, B. W., and J. Wu Zhang, 1996: Mesoscale shallow convection in the atmosphere. Rev. Geophys, 34 , 403431.

  • Beljaars, A. C. M., and P. Viterbo, 1998: Role of the boundary layer in a numerical weather prediction model. Clear and Cloudy Boundary Layers, A. A. M. Holtslag and P. G. Duynkerke, Eds., Royal Netherlands Academy of Arts and Sciences, 287–304.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., P. Minnis, W. Ridgway, and D. F. Young, 1992: Integration of satellite and surface data using a radiative–convective oceanic boundary-layer model. J. Appl. Meteor, 31 , 340350.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., E. Klinker, A. K. Betts, and J. A. Coakley, 1995: Comparison of ceilometer, satellite, and synoptic measurements of boundary-layer cloudiness and the ECMWF diagnostic cloud parameterization scheme during ASTEX. J. Atmos. Sci, 52 , 27362751.

    • Search Google Scholar
    • Export Citation
  • Coulman, C. E., 1971: Correlation between velocity, temperature and humidity fluctuations in the air above land and ocean. Bound.- Layer Meteor, 19 , 403420.

    • Search Google Scholar
    • Export Citation
  • Eymard, L., and Coauthors, 1996: Study of the air–sea interactions at the mesoscale: The SEMAPHORE experiment. Ann. Geophys, 14 , 9861015.

    • Search Google Scholar
    • Export Citation
  • Giordani, H., and S. Planton, 2000: Modeling and analysis of ageostrophic circulation over the Azores oceanic front during the SEMAPHORE experiment. Mon. Wea. Rev, 128 , 22702287.

    • Search Google Scholar
    • Export Citation
  • Giordani, H., S. Planton, B. Benech, and B. Kwon, 1998: Atmospheric boundary layer response to sea surface temperature during the SEMAPHORE experiment. J. Geophys. Res, 103 , 2504725060.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and B. A. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6 , 18251842.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., 1999: Clouds in the ECMWF reanalysis. J. Climate, 12 , 947959.

  • Josse, P., 1999: Modélisation couplée océan–atmosphère à meso- échelle application à la campagne SEMAPHORE. Ph.D. thesis, Université Paul Sabatier, 212 pp.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., 1997: Synoptic variability of low-cloud properties and meteorological parameters in the subtropical trade wind boundary layer. J. Climate, 10 , 20182039.

    • Search Google Scholar
    • Export Citation
  • Lambert, D., 1997: Structure moyenne et turbulente de la couche limite atmosphérique au dessus de l'océan. Ph.D. thesis, Université Paul Sabatier, 212 pp.

    • Search Google Scholar
    • Export Citation
  • Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor, 17 , 187202.

  • Luenberger, D., 1975: Introduction to Dynamic Sytems. John Wiley and Sons, 446 pp.

  • Martin, G. M., M. R. Bush, A. R. Brown, A. P. Lock, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part II: Tests in climate and mesoscale models. Mon. Wea. Rev, 128 , 32003217.

    • Search Google Scholar
    • Export Citation
  • Mathieu, A., G. Sèze, C. Guerin, H. Dupuis, and A. Weill, 1999: Mesoscale boundary layer clouds structures as observed during the SEMAPHORE campaign. Phys. Chem. Earth, 8B , 933938.

    • Search Google Scholar
    • Export Citation
  • Mathieu, A., G. Sèze, A. Lahellec, C. Guerin, and A. Weill, 2003: Characterization of the cloud-topped boundary layer at the synoptic scale using AVHRR observations during the SEMAPHORE experiment. J. Appl. Meteor, 42 , 17201730.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., P. W. Heck, D. F. Young, C. W. Fairall, and J. B. Snider, 1991: Stratocumulus cloud properties derived from simultaneous satellite and island-based instrumentation during FIRE. J. Appl. Meteor, 31 , 317339.

    • Search Google Scholar
    • Export Citation
  • Norris, J. A. M., and C. A. Weaver, 2001: Improved techniques for evaluating GCM cloudiness applied to the NCAR CCM3. J. Climate, 14 , 25402550.

    • Search Google Scholar
    • Export Citation
  • Sèze, G., and M. Desbois, 1987: Cloud cover analysis from satellite imagery using spatial and temporal characteristics of data. J. Climate Appl. Meteor, 26 , 123150.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1997: Parameterization of subgrid-scale tracer transport. CAS/JSC Working Group on Numerical Experimentation Rep. 26, Virginia Beach, VA, 148 pp.

    • Search Google Scholar
    • Export Citation
  • Troen, I., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer: Sensitivity to surface evaporation. Bound.-Layer Meteor, 37 , 129148.

    • Search Google Scholar
    • Export Citation
  • Vogelezang, D. H. P., and A. A. M. Holtslag, 1996: Evaluation and model impacts of alternative boundary-layer height formulations. Bound.-Layer Meteor, 81 , 245269.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 65 22 1
PDF Downloads 27 10 0