• Baran, A. J., , P. N. Francis, , L. C. Labonnote, , and M. Doutriaux-Boucher, 2001: A scattering phase function for ice cloud: Tests of applicability using aircraft and satellite multi-angle multi-wavelength radiance measurements of cirrus. Quart. J. Roy. Meteor. Soc, 127 , 23952416.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., , and J. D. Spinhirne, 2000: Remote sensing of cloud properties using MODIS Airborne Simulator imagery during SUCCESS. III. Cloud overlap. J. Geophys. Res, 105 , 1179311804.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., , D. P. Kratz, , P. Yang, , S. C. Ou, , Y. Hu, , P. F. Soulen, , and S. C. Tsay, 2000a: Remote sensing of cloud properties using MODIS Airborne Simulator imagery during SUCCESS. I. Data and models. J. Geophys. Res, 105 , 1176711780.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., , P. F. Soulen, , K. I. Strabala, , M. D. King, , S. A. Ackerman, , W. P. Menzel, , and P. Yang, 2000b: Remote sensing of cloud properties using MODIS Airborne Simulator imagery during SUCCESS. II. Cloud thermodynamic phase. J. Geophys. Res, 105 , 1178111792.

    • Search Google Scholar
    • Export Citation
  • Chepfer, H., , G. Brogniez, , and Y. Fouquart, 1998: Cirrus clouds microphysical properties deduced from POLDER observations. J. Quant. Spectrosc. Radiat. Transfer, 60 , 375390.

    • Search Google Scholar
    • Export Citation
  • Chepfer, H., , P. Goloub, , J. Riedi, , J. F. De Hann, , J. W. Hovenier, , and P. H. Flamant, 2001: Ice crystal shapes in cirrus clouds derived from POLDER/ADEOS-1. J. Geophys. Res, 106 , 79557966.

    • Search Google Scholar
    • Export Citation
  • Chou, M. D., , K. T. Lee, , and P. Yang, 2002: Parameterization of shortwave cloud optical properties for a mixture of ice particle habits for use in atmospheric models. J. Geophys. Res.,107, 4600, doi:10.1029/2002JD002061.

    • Search Google Scholar
    • Export Citation
  • Deirmendjian, D., 1969: Electromagnetic Scattering on Spherical Polydispersions. Elsevier, 290 pp.

  • Dubuisson, P., , J. C. Buriez, , and Y. Fouquart, 1996: High spectral resolution solar radiative transfer in absorbing and scattering media: Application to the satellite simulation. J. Quant. Spectrosc. Radiat. Transfer, 55 , 103126.

    • Search Google Scholar
    • Export Citation
  • Giraud, V., , J. C. Buriez, , Y. Fouquart, , and F. Parol, 1997: Large-scale analysis of cirrus clouds from AVHRR data: Assesment of both a microphysical index and the cloud-top temperature. J. Appl. Meteor, 36 , 664675.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1975: Cirrus uncinus generating cells and the evolution of cirriform clouds. Part I: Aircraft observations of the growth of the ice phase. J. Atmos. Sci, 32 , 799807.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1993: Microphysical structure of stratiform and cirrus clouds. Aerosol–Cloud–Climate Interactions, P. V. Hobbs, Ed., International Geophysics Series, Vol. 54, Academic Press, 233 pp.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , and C. M. R. Platt, 1984: A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content. J. Atmos. Sci, 41 , 846855.

    • Search Google Scholar
    • Export Citation
  • Holz, R., 2001: Contribution à l'élaboration d'une climatologie globale des cirrus: Etude de l'impact de la variabilité des propriétés optiques infrarouges des cristaux de glace sur la restitution du diamètre effectif à partir d'observations spatiales. Ph.D. thesis, Ecole Polytechinque, 125 pp.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., , D. Winker, , P. Yang, , B. Baum, , L. Poole, , and L. Vann, 2001: Identification of cloud phase from PICASSO-CENA lidar depolarization: A multiple scattering sensitivity study. J. Quant. Spectrosc. Radiat. Transfer, 70 , 569579.

    • Search Google Scholar
    • Export Citation
  • Inoue, T., 1985: On the temperature and effective emissivity determination of semi-transparent cirrus clouds by bispectral measurements in the 10 microns window region. J. Meteor. Soc. Japan, 63 , 8899.

    • Search Google Scholar
    • Export Citation
  • Intrieri, J., , G. L. Stephens, , W. L. Eberhard, , and T. Uttal, 1993: A method for determining cirrus cloud particles sizes using lidar and radar backscatter technique. J. Appl. Meteor, 32 , 10741082.

    • Search Google Scholar
    • Export Citation
  • Intrieri, J., , W. L. Eberhard, , T. Uttal, , J. A. Shaw, , J. B. Snider, , Y. Han, , B. W. Orr, , and S. Y. Matrosov, 1995: Multiwavelength observations of a developing cloud system: The FIRE II 26 November 1991 case study. J. Atmos. Sci, 52 , 40794093.

    • Search Google Scholar
    • Export Citation
  • King, M. D., and Coauthors, 2003: Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS. IEEE Trans. Geosci. Remote Sens, 41 , 442458.

    • Search Google Scholar
    • Export Citation
  • Krupp, C., 1991: Holographic measurements of ice crystals in cirrus clouds during the International Cloud Experiment ICE 1989. Report of the Fourth ICE/EUCREX Workshop, Lille, France, Laboratoire d'Optique Atmosphérique, USTL.

    • Search Google Scholar
    • Export Citation
  • Liou, K. N., 1986: Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev, 114 , 11671199.

  • Mace, G. G., , K. Sassen, , S. Kinne, , and T. P. Ackerman, 1998: An examination of cirrus cloud characteristics using data from millimeter wave radar and lidar: The 24 April SUCCESS case study. Geophys. Res. Lett, 25 , 11331136.

    • Search Google Scholar
    • Export Citation
  • Macke, A., , J. Mueller, , and E. Raschke, 1996: Single scattering properties of atmospheric ice crystals. J. Atmos. Sci, 53 , 28132825.

  • Magono, C., , and C. W. Lee, 1966: Meteorological classification of natural snow crystal. J. Fac. Sci. Hokkaido Univ. Ser. 7, 2 , 320335.

    • Search Google Scholar
    • Export Citation
  • Masuda, K., , H. Ishimoto, , and T. Takashima, 2002: Retrieval of cirrus optical thickness and ice-shape information using total and polarized reflectance from satellite measurements. J. Quant. Spectrosc. Radiat. Transfer, 75 , 3951.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 1999: Retrievals of vertical profiles of ice cloud microphysics from radar and IR measurements using tuned regressions between reflectivity and cloud parameters. J. Geophys. Res, 104 , 1674116753.

    • Search Google Scholar
    • Export Citation
  • McClatchey, R. A., , R. W. Fenn, , J. E. A. Selby, , F. E. Volz, , and J. S. Garing, 1972: Optical properties of the atmosphere. 3d ed. Publ. AFCRL-72-0497, Air Force Cambridge Research Laboratory, Hanscom Air Force Base, 108 pp.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., , and A. J. Heymsfield, 1996: Microphysical characteristics of three anvils sampled during the Central Equatorial Pacific Experiment. J. Atmos. Sci, 53 , 24012423.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., , P. Yang, , A. Macke, , and A. J. Baran, 2002: A new parameterization of single-scattering solar radiative properties for tropical anvils using observed ice crystal size and shape distributions. J. Atmos. Sci, 59 , 24582478.

    • Search Google Scholar
    • Export Citation
  • Miloshevich, L. M., , and A. J. Heymsfield, 1996: A balloon-borne cloud particle replicator for measuring vertical profiles of cloud microphysics: Instrument design and performance. Proc. 12th Int. Conf. on Clouds and Precipitation, Zurich, Switzerland.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., , D. P. Garber, , and D. F. Young, 1998: Parameterizations of reflectance and effective emittance for satellite remote sensing of cloud properties. J. Atmos. Sci, 55 , 33133339.

    • Search Google Scholar
    • Export Citation
  • Noel, V., , H. Chepfer, , G. Ledanois, , and P. H. Flamant, 2001: Computation of single-scattering matrix for non-spherical particles randomly or horizontally oriented in space. Appl. Opt, 40 , 43654375.

    • Search Google Scholar
    • Export Citation
  • Noel, V., , H. Chepfer, , G. Ledanois, , A. Delaval, , and P. H. Flamant, 2002: Classification of particule effective shape ratios in cirrus clouds based on lidar depolarization ratio. Appl. Opt, 41 , 42454257.

    • Search Google Scholar
    • Export Citation
  • Parol, F., , J. C. Buriez, , G. Brogniez, , and Y. Fouquart, 1991: Information content of AVHRR channels 4 and 5 with respect to the effective radius of cirrus cloud particles. J. Appl. Meteor, 30 , 973984.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., , M. D. King, , S. A. Ackerman, , W. P. Menzel, , B. A. Baum, , J. C. Riedi, , and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens, 41 , 459473.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., , J. D. Spinhirne, , and W. D. Hart, 1989: Optical and microphysical properties of a cold cirrus cloud: Evidence for regions of small particles. J. Geophys. Res, 94 , 1115111164.

    • Search Google Scholar
    • Export Citation
  • Randall, D., , B. Albrecht, , S. Cox, , D. Johnson, , P. Minnis, , W. Rossow, , and D. Starr, 1996: On FIRE at ten. Advances in Geophysics, Vol. 38, Academic Press, 37–177.

    • Search Google Scholar
    • Export Citation
  • Raschke, E., , P. H. Flamant, , Y. Fouquart, , P. Hignet, , H. Hisaka, , P. R. Jonas, , H. Sundquist, , and P. Wendling, 1998: Cloud-radiation studies during the European Cloud Radiation Experiment (EUCREX). Surv. Geophys, 19 , 89138.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., 1991: The polarization lidar technique for cloud research: A review and current assessment. Bull. Amer. Meteor. Soc, 72 , 18481866.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., , and K. N. Liou, 1979: Scattering of polarized laser light by water droplet, mixed-phase, and ice crystal clouds. Part II: Angular depolarizing and multiple-scattering behavior. J. Atmos. Sci, 36 , 852861.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., , and L. Petrilla, 1986: Lidar depolarization from multiple scattering in marine stratus clouds. Appl. Opt, 25 , 14501459.

  • Scott, N. A., 1974: A direct method of computation of the transmission function of an inhomogeneous gaseous medium-I: Description of the method. J. Quant. Spectrosc. Radiat. Transfer, 14 , 691704.

    • Search Google Scholar
    • Export Citation
  • Spinhirne, J. D., 1982: Lidar clear atmosphere multiple scattering dependence on receiver range. Appl. Opt, 21 , 24672468.

  • Stamnes, K., , S. Tsay, , W. Wiscombe, , and K. Jayaweera, 1988: Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt, 27 , 25022509.

    • Search Google Scholar
    • Export Citation
  • Takano, Y., , and K. N. Liou, 1989: Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals. J. Atmos. Sci, 46 , 319.

    • Search Google Scholar
    • Export Citation
  • Toon, O. B., , and R. C. Miake-Lye, 1998: Contrails and cloud effects special study (SUCCESS). Geophys. Res. Lett, 25 , 11091112.

  • van de Hulst, H. C., 1957: Light Scattering by Small Particles. Dover, 470 pp.

  • Warren, S. G., 1984: Optical constants of ice from the ultraviolet to the microwave. Appl. Opt, 23 , 12061225.

  • Wendling, P., , R. Wendling, , and H. K. Weickmann, 1979: Scattering of solar radiation by hexagonal ice crystals. Appl. Opt, 18 , 26632671.

    • Search Google Scholar
    • Export Citation
  • Wiegner, M., , U. Oppel, , H. Krasting, , W. Renger, , C. Kiemle, , and M. Wirth, 1996: Cirrus measurements from a spaceborne lidar: Influence of multiple scattering. Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann et al., Eds., Springler-Verlag, 189–192.

    • Search Google Scholar
    • Export Citation
  • Yang, P., , and K. N. Liou, 1998: Single-scattering properties of complex ice crystals in terrestrial atmosphere. Contrib. Atmos. Phys, 71 , 223248.

    • Search Google Scholar
    • Export Citation
  • Yang, P., , B. Gao, , B. A. Baum, , Y. X. Hu, , W. J. Wiscombe, , S. Tsay, , and D. M. Winker, 2001: Radiative properties of cirrus clouds in the infrared (8–13 μm) spectral region. J. Quant. Spectros. Radiat. Transfer, 70 , 473504.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 22 22 2
PDF Downloads 12 12 1

Improving Retrievals of Cirrus Cloud Particle Size Coupling Lidar and Three-Channel Radiometric Techniques

View More View Less
  • 1 Laboratoire de Météorologie Dynamique, IPSL, Palaiseau, France
  • | 2 NASA Langley Research Center, Hampton, Virginia
  • | 3 Laboratoire de Météorologie Dynamique, IPSL, Palaiseau, France
  • | 4 Elico, Wimereux, France
  • | 5 Department of Atmospheric Sciences, Texas A&M University, College Station, Texas
© Get Permissions
Restricted access

Abstract

This study is intended to illustrate the potential advantage of combining lidar measurements and the split-window technique based on the infrared spectral information contained at the 8.65-, 11.15-, and 12.05-μm bands for inferring the microphysical properties of cirrus clouds. The lidar returns are employed to detect cirrus clouds. The optical properties of nonspherical ice crystals computed from the state-of-the-art scattering computational methods are used for the present forward radiative transfer simulation that fully accounts for both gaseous absorption and multiple scattering processes in the atmosphere. A combination of the radiances at the three infrared (IR) bands with lidar backscatter returns cannot uniquely specify the effective size of ice crystals because of its dependence on the particle aspect ratios. To avoid the shortcoming associated with a potential multivalued retrieval, lidar depolarization observation is used to constrain the specification of the particle aspect ratio in the retrieval implementation based on a precalculated lookup library.

The present methodology for inferring the microphysical properties of cirrus clouds is implemented for nine cases by using the measurements from a 532-nm lidar located at the Palaiseau, France, ground-based site and the infrared spectral bands from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra platform. It is shown that the three IR wavelengths are quite complementary in constraining the retrieval of the particle size, leading to a significant advance in comparison with two-channel techniques, whereas the aspect ratio constraint due to lidar depolarization reduces the uncertainty of retrieved particle size by more than 20% for 70% of the cases and more than 65% for 40% of the cloud cases.

Corresponding author address: Marjolaine Chiriaco, LMD—Ecole Polytechnique, 91 128 Palaiseau Cedex, France. Email: chiriaco@lmd.polytechnique.fr

Abstract

This study is intended to illustrate the potential advantage of combining lidar measurements and the split-window technique based on the infrared spectral information contained at the 8.65-, 11.15-, and 12.05-μm bands for inferring the microphysical properties of cirrus clouds. The lidar returns are employed to detect cirrus clouds. The optical properties of nonspherical ice crystals computed from the state-of-the-art scattering computational methods are used for the present forward radiative transfer simulation that fully accounts for both gaseous absorption and multiple scattering processes in the atmosphere. A combination of the radiances at the three infrared (IR) bands with lidar backscatter returns cannot uniquely specify the effective size of ice crystals because of its dependence on the particle aspect ratios. To avoid the shortcoming associated with a potential multivalued retrieval, lidar depolarization observation is used to constrain the specification of the particle aspect ratio in the retrieval implementation based on a precalculated lookup library.

The present methodology for inferring the microphysical properties of cirrus clouds is implemented for nine cases by using the measurements from a 532-nm lidar located at the Palaiseau, France, ground-based site and the infrared spectral bands from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra platform. It is shown that the three IR wavelengths are quite complementary in constraining the retrieval of the particle size, leading to a significant advance in comparison with two-channel techniques, whereas the aspect ratio constraint due to lidar depolarization reduces the uncertainty of retrieved particle size by more than 20% for 70% of the cases and more than 65% for 40% of the cloud cases.

Corresponding author address: Marjolaine Chiriaco, LMD—Ecole Polytechnique, 91 128 Palaiseau Cedex, France. Email: chiriaco@lmd.polytechnique.fr

Save