• Atlas, D., 1959: Meteorological “angel” echoes. J. Meteor, 16 , 611.

  • Bigg, E. K., 1953: The supercooling of water. Proc. Phys. Soc. London, B66 , 688694.

  • Bosart, B. L., , W-C. Lee, , and R. M. Wakimoto, 2002: Procedures to improve the accuracy of airborne Doppler radar data. J. Atmos. Oceanic Technol, 19 , 322339.

    • Search Google Scholar
    • Export Citation
  • Brown, P. R. A., , and H. A. Swann, 1997: Evaluation of key microphysical parameters in three-dimensional cloud-model simulations using aircraft and multiparameter radar. Quart. J. Roy. Meteor. Soc, 123 , 22452275.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., , G. J. Tripoli, , R. M. Rauber, , and E. A. Mulvihill, 1986: Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Climate Appl. Meteor, 25 , 16581680.

    • Search Google Scholar
    • Export Citation
  • Cox, G. P., 1988: Modeling precipitation in frontal rainbands. Quart. J. Roy. Meteor. Soc, 114 , 115127.

  • Cressman, G. P., 1959: An operational objective analysis scheme. Mon. Wea. Rev, 87 , 367374.

  • Doviak, R. J., , and D. S. Zrnic, 1993: Doppler Radar and Weather Observations. Academic Press, 562 pp.

  • Fovell, R. G., 2002: Upstream influence of numerically simulated squall-line storms. Quart. J. Roy. Meteor. Soc, 128 , 893912.

  • Fovell, R. G., , and P-H. Tan, 1998: The temporal behavior of numerically simulated multicell-type storms. Part II: The convective cell life cycle and cell regeneration. Mon. Wea. Rev, 126 , 551577.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., , and P. S. Dailey, 2001: Numerical simulation of the interaction between the sea-breeze front and horizontal convective rolls. Part II: Alongshore ambient flow. Mon. Wea. Rev, 129 , 20572072.

    • Search Google Scholar
    • Export Citation
  • Gunn, K. L. S., , and J. S. Marshall, 1958: The distribution with size of aggregate snowflakes. J. Atmos. Sci, 15 , 452461.

  • Hall, F. F., , J. G. Edinger, , and W. D. Neff, 1975: Convective plumes in the planetary boundary layer investigated with an acoustic sounder. J. Appl. Meteor, 14 , 513523.

    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., , C. A. Walther, , C. L. Frush, , J. Testud, , and F. Baudin, 1994: The ELDORA/ASTRAIA airborne Doppler weather radar: Goals, design, and first field tests. Proc. IEEE, 82 , 18731890.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., , R. B. Wilhelmson, , and P. S. Ray, 1981: Observed and numerically simulated structure of a mature supercell thunderstorm. J. Atmos. Sci, 38 , 15581580.

    • Search Google Scholar
    • Export Citation
  • Knight, C. A., , and L. J. Miller, 1993: First radar echoes from cumulus clouds. Bull. Amer. Meteor. Soc, 74 , 179188.

  • Knight, C. A., , and L. J. Miller, 1998: Early radar echoes from small, warm cumulus: Bragg and hydrometeor scattering. J. Atmos. Sci, 55 , 29742992.

    • Search Google Scholar
    • Export Citation
  • Lee, W-C., , P. Dodge, , F. D. Marks, , and P. H. Hildebrand, 1994: Mapping of airborne Doppler radar data. J. Atmos. Oceanic Technol, 11 , 572578.

    • Search Google Scholar
    • Export Citation
  • Leise, J. A., 1982: A multidimensional scale-telescoped filter and data extension package. NOAA Tech. Memo. ERL WPL-82, 19 pp. [Available from NOAA ERL, 325 Broadway, Boulder, CO 80303.].

    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., 1970: Airplane measurements of planetary boundary layer structure. J. Appl. Meteor, 9 , 874884.

  • Lilly, D. K., 1964: Numerical solutions for the shape-preserving two-dimensional thermal convection element. J. Atmos. Sci, 21 , 8398.

    • Search Google Scholar
    • Export Citation
  • Lin, Y-L., , R. D. Farley, , and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor, 22 , 10651092.

    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., 1954: Some results of a trade-cumulus cloud investigation. J. Meteor, 11 , 220237.

  • Marshall, J. S., , and W. M. Palmer, 1948: The distribution of raindrops with size. J. Meteor, 5 , 165166.

  • Mohr, C. G., , L. J. Miller, , R. L. Vaughn, , and H. W. Frank, 1986: The merger of mesoscale datasets into a common Cartesian format for efficient and systematic analysis. J. Atmos. Oceanic Technol, 3 , 143161.

    • Search Google Scholar
    • Export Citation
  • Musil, D. J., , E. L. May, , P. L. Smith, , and W. R. Sand, 1976: Structure of an evolving hailstorm. Part IV: Internal structure from penetrating aircraft. Mon. Wea. Rev, 104 , 596602.

    • Search Google Scholar
    • Export Citation
  • Nicholls, M. E., , R. A. Pielke, , and W. R. Cotton, 1991: Thermally forced gravity waves in an atmosphere at rest. J. Atmos. Sci, 48 , 18691884.

    • Search Google Scholar
    • Export Citation
  • Ogura, Y., 1962: Convection of isolated masses of a buoyant fluid: A numerical calculation. J. Atmos. Sci, 19 , 492502.

  • Oye, R., , C. Mueller, , and S. Smith, 1995: Software for radar translation, visualization, editing and interpolation. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 359–364.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., , and M. D. Albright, 1997: Frontal structure in the interior of an intense mature ocean cyclone. Wea. Forecasting, 12 , 866876.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., , R. M. Rasmussen, , and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc, 124 , 10711107.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , J. B. Klemp, , and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci, 45 , 463485.

  • Ryan, B. F., 1996: On the global variation of precipitating layer clouds. Bull. Amer. Meteor. Soc, 77 , 5370.

  • Schultz, P., 1995: An explicit cloud physics parameterization for operational numerical weather prediction. Mon. Wea. Rev, 123 , 33313343.

    • Search Google Scholar
    • Export Citation
  • Scorer, R. S., 1957: Experiments on convection of isolated masses of buoyant fluid. J. Fluid Mech, 2 , 583594.

  • Smith, P. L., 1984: Equivalent radar reflectivity factors for snow and ice particles. J. Climate Appl. Meteor, 23 , 12581260.

  • Straka, J. M., , and E. N. Rasmussen, 1997: Toward improving microphysical parameterizations of conversion processes. J. Appl. Meteor, 36 , 896902.

    • Search Google Scholar
    • Export Citation
  • Telford, J. W., , and J. Warner, 1962: On the measurement from an aircraft of buoyancy and vertical air velocity in cloud. J. Atmos. Sci, 19 , 415423.

    • Search Google Scholar
    • Export Citation
  • Testud, J., , P. H. Hildebrand, , and W-C. Lee, 1995: A procedure to correct airborne Doppler radar data for navigation errors using the echo returned from the earth's surface. J. Atmos. Oceanic Technol, 12 , 800820.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., , and W. R. Cotton, 1980: A numerical investigation of several factors contributing to the observed variable intensity of deep convection over South Florida. J. Appl. Meteor, 19 , 10371063.

    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 1973: Buoyancy Effects in Fluids. Cambridge University Press, 368 pp.

  • Wakimoto, R. M., , W-C. Lee, , H. B. Bluestein, , C-H. Liu, , and P. H. Hildebrand, 1996: ELDORA observations during VORTEX 95. Bull. Amer. Meteor. Soc, 77 , 14651481.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and Coauthors. 2004: An overview of the International H20 Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc, 85 , 253277.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., , and W. E. Schreiber, 1986: Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev, 114 , 25162536.

    • Search Google Scholar
    • Export Citation
  • Xue, M., , D-H. Wang, , J-D. Gao, , K. Brewster, , and K. K. Droegemeier, 2003: The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation. Meteor. Atmos. Phys, 82 , 139170.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10 10 2
PDF Downloads 2 2 0

Mantle Echoes Associated with Deep Convection: Observations and Numerical Simulations

View More View Less
  • 1 Department of Atmospheric Sciences, University of California, Los Angeles, Los Angeles, California
  • | 2 National Center for Atmospheric Research,* Boulder, Colorado
© Get Permissions
Restricted access

Abstract

Finescale radar observations of intense thermals/starting plumes, during the early stages of precipitation formation, were collected by an airborne Doppler radar on two separate days. The radar data were recorded as the aircraft flew underneath the developing echoes. Mantle echoes (echoes that often appear as an inverted U shape) were observed on both days. Striking in one of the scans was the resemblance of the echo to a mushroom cloud resulting from a nuclear explosion. Numerical simulations using a two-dimensional cloud-resolving model were run to augment the interpretation of the observations. One of the important conclusions was the proposed modification to the default bulk microphysical scheme used in the model. The default scheme yields “a rush to precipitation” leading to the early establishment of large precipitation contents, which is not supported by the observations. Suggested modifications to the scheme are presented.

Corresponding author address: Dr. Roger M. Wakimoto, Department of Atmospheric Sciences, UCLA, 405 Hilgard Avenue, Los Angeles, CA 90095-1565. Email: roger@atmos.ucla.edu

Abstract

Finescale radar observations of intense thermals/starting plumes, during the early stages of precipitation formation, were collected by an airborne Doppler radar on two separate days. The radar data were recorded as the aircraft flew underneath the developing echoes. Mantle echoes (echoes that often appear as an inverted U shape) were observed on both days. Striking in one of the scans was the resemblance of the echo to a mushroom cloud resulting from a nuclear explosion. Numerical simulations using a two-dimensional cloud-resolving model were run to augment the interpretation of the observations. One of the important conclusions was the proposed modification to the default bulk microphysical scheme used in the model. The default scheme yields “a rush to precipitation” leading to the early establishment of large precipitation contents, which is not supported by the observations. Suggested modifications to the scheme are presented.

Corresponding author address: Dr. Roger M. Wakimoto, Department of Atmospheric Sciences, UCLA, 405 Hilgard Avenue, Los Angeles, CA 90095-1565. Email: roger@atmos.ucla.edu

Save