• Agee, E. M., , T. S. Chen, , and K. E. Doswell, 1973: A review of mesoscale cellular convection. Bull. Amer. Meteor. Soc, 54 , 10041012.

  • Asai, T., 1970: Three-dimensional features of thermal convection in a plain Couette flow. J. Meteor. Soc. Japan, 48 , 1829.

  • Asai, T., 1972: Thermal instability of a shear flow turning the direction with height. J. Meteor. Soc. Japan, 50 , 525532.

  • Atkins, N. T., , R. M. Wakimoto, , and T. M. Weckwerth, 1995: Observations of the sea-breeze front during CaPE. Part II: Dual-Doppler and aircraft analysis. Mon. Wea. Rev, 123 , 944969.

    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., , R. M. Wakimoto, , and C. L. Ziegler, 1998: Observations of the finescale structure of a dryline during VORTEX 95. Mon. Wea. Rev, 126 , 525555.

    • Search Google Scholar
    • Export Citation
  • Balaji, V., , and T. L. Clark, 1988: Scale selection in locally forced convective fields and the initiation of deep cumulus. J. Atmos. Sci, 45 , 31883211.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., 1983: Some effects of surface heating and topography on the regional severe storm environment. Ph.D. dissertation, The Pennsylvania State University, 265 pp.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., , and M. H. Jain, 1985: Formulation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci, 42 , 17111732.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., 1980: Longitudinal instabilities and secondary flows in the planetary boundary layer: A review. Rev. Geophys. Space Sci, 18 , 683697.

    • Search Google Scholar
    • Export Citation
  • Colby, F. P., 1984: Convective inhibition as a predictor of convection during AVE-SESAME II. Mon. Wea. Rev, 112 , 22392252.

  • Cooper, K. A., , M. R. Hjelmfelt, , R. G. Derickson, , D. A. R. Kristovich, , and N. F. Laird, 2000: Numerical simulation of transitions in boundary layer convective structures in a lake-effect snow event. Mon. Wea. Rev, 128 , 32833295.

    • Search Google Scholar
    • Export Citation
  • Dailey, P. S., , and R. G. Fovell, 1999: Numerical simulation of the interaction between the sea-breeze front and horizontal convective rolls. Part I: Offshore ambient flow. Mon. Wea. Rev, 127 , 858878.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1972: Parameterization of the planetary boundary layer for use in general circulation models. Mon. Wea. Rev, 100 , 93106.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res, 83 , 18891903.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor, 18 , 495527.

  • Etling, D., , and R. A. Brown, 1993: Roll vorticies in the planetary boundary layer: A review. Bound.-Layer Meteor, 65 , 215248.

  • Fritsch, J. M., , R. J. Kane, , and C. R. Chelius, 1986: The contribution of mesoscale convective systems to the warm-season precipitation in the United States. J. Climate Appl. Meteor, 25 , 13331345.

    • Search Google Scholar
    • Export Citation
  • Gal-Chen, T., , and R. Sommerville, 1975: On the use of a coordinate transformation for the solution of the Navier–Stokes equations. J. Comput. Phys, 17 , 209228.

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., , C. L. Ziegler, , and H. B. Bluestein, 1993: Investigation of the dryline and convective storms initiated along the dryline: Field experiments during COPS-91. Bull. Amer. Meteor. Soc, 74 , 21332145.

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., , H. B. Bluestein, , T. M. Crawford, , M. E. Baldwin, , and R. M. Rabin, 1997: Severe thunderstorm development in relation to along-dryline variability: A case study. Mon. Wea. Rev, 125 , 231251.

    • Search Google Scholar
    • Export Citation
  • Hauf, T., , and T. L. Clark, 1989: Three-dimensional numerical experiments on convectively forced internal gravity waves. Quart. J. Roy. Meteor. Soc, 115 , 309333.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., , and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci, 35 , 10701096.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., , and J. McCarthy, 1982: The evolution of an Oklahoma dryline. Part II: Boundary-layer forcing of mesoconvective systems. J. Atmos. Sci, 39 , 237257.

    • Search Google Scholar
    • Export Citation
  • Kristovich, D. A. R., 1993: Mean circulations of boundary-layer rolls in lake-effect snow storms. Bound.-Layer Meteor, 63 , 293315.

  • Kristovich, D. A. R., , N. F. Laird, , M. R. Hjelmfelt, , R. G. Derickson, , and K. A. Cooper, 1999: Transitions in boundary layer meso-γ convective structures: An observational case study. Mon. Wea. Rev, 127 , 28952909.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., , and T. L. Clark, 2002: Gravity waves generated by the dry convective boundary layer: Two-dimensional scale selection and boundary-layer feedback. Quart. J. Roy. Meteor. Soc, 128 , 15431570.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., 1990: Some observations of vertical velocity skewness in the planetary boundary layer. J. Atmos. Sci, 47 , 11631169.

  • McCarthy, J., , and S. E. Koch, 1982: The evolution of an Oklahoma dryline. Part I: A meso- and subsynoptic-scale analysis. J. Atmos. Sci, 39 , 225236.

    • Search Google Scholar
    • Export Citation
  • Peckham, S. E., 1999: The influence of topography and lower-tropospheric winds on dryline evolution and convective storm formation. Ph.D. dissertation, Texas A&M University, 184 pp.

    • Search Google Scholar
    • Export Citation
  • Peckham, S. E., , and L. J. Wicker, 2000: The influence of topography and lower-troposphere winds on dryline morphology. Mon. Wea. Rev, 128 , 21652189.

    • Search Google Scholar
    • Export Citation
  • Rhea, J. O., 1966: A study of thunderstorm formation along drylines. J. Appl. Meteor, 5 , 5883.

  • Richardson, Y. P., 1999: The influence of horizontal variations in vertical shear and low-level moisture on numerically simulated convective storms. Ph.D. dissertation, School of Meteorology, University of Oklahoma, 236 pp.

    • Search Google Scholar
    • Export Citation
  • Richardson, Y. P., , and K. K. Droegemeier, 1996: An investigation of the dynamics governing organized multicell rotation and transition. Preprints, 18th Conf. on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc., 195–199.

    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1973: The motion and morphology of the dryline. NOAA Tech. Memo ERL NSSL-66, 81 pp.

  • Shaw, B. L., , R. A. Pielke, , and C. L. Ziegler, 1997: A three-dimensional numerical simulation of a Great Plains dryline. Mon. Wea. Rev, 125 , 14891506.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1985: A fair-weather cumulus cloud classification scheme for mixed-layer studies. J. Climate Appl. Meteor, 24 , 4956.

  • Sun, W-Y., , and C-Z. Chang, 1986: Diffusion model for a convective layer. Part I: Numerical simulation of convective boundary layer. J. Climate Appl. Meteor, 25 , 14451453.

    • Search Google Scholar
    • Export Citation
  • Sykes, R. I., , and D. S. Henn, 1989: Large-eddy simulation of turbulent sheared convection. J. Atmos. Sci, 46 , 11061118.

  • Wakimoto, R. M., , and N. T. Atkins, 1994: Observations of the sea-breeze front during CaPE. Part I: Single-Doppler, satellite, and cloud photogrammetry analysis. Mon. Wea. Rev, 122 , 10921114.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., 2000: The effect of small-scale moisture variability on thunderstorm initiation. Mon. Wea. Rev, 128 , 40174030.

  • Weckwerth, T. M., , J. W. Wilson, , and R. M. Wakimoto, 1996: Thermodynamic variability within the convective boundary layer due to horizontal convective rolls. Mon. Wea. Rev, 124 , 769784.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., , J. W. Wilson, , R. M. Wakimoto, , and N. A. Crook, 1997: Horizontal convective rolls: Determining the environmental conditions supporting their existence and characteristics. Mon. Wea. Rev, 125 , 505526.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., , T. W. Horst, , and J. W. Wilson, 1999: An observational study of the evolution of horizontal convective rolls. Mon. Wea. Rev, 127 , 21602179.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., , and R. B. Wilhelmson, 1995: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci, 52 , 26752703.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., , and D. L. Megenhardt, 1997: Thunderstorm initiation, organization, and lifetime associated with Florida boundary layer convergence lines. Mon. Wea. Rev, 125 , 15071525.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., , G. B. Foote, , N. A. Crook, , J. C. Fankhauser, , C. G. Wade, , J. D. Tuttle, , C. K. Mueller, , and S. K. Krieger, 1992: The role of boundary-layer convergence zones and horizontal rolls in the initiation of thunderstorms: A case study. Mon. Wea. Rev, 120 , 17851815.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., , and C. E. Hane, 1993: An observational study of the dryline. Mon. Wea. Rev, 121 , 11341151.

  • Ziegler, C. L., , and E. N. Rasmussen, 1998: The initiation of moist convection at the dryline: Forecasting issues from a case study perspective. Wea. Forecasting, 13 , 11061131.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., , W. J. Martin, , R. A. Pielke, , and R. L. Walko, 1995: A modeling study of the dryline. J. Atmos. Sci, 52 , 263285.

  • Ziegler, C. L., , T. J. Lee, , and R. A. Pielke Sr., 1997: Convective initiation at the dryline: A modeling study. Mon. Wea. Rev, 125 , 10011026.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 54 54 14
PDF Downloads 13 13 1

Numerical Simulation of the Interaction between the Dryline and Horizontal Convective Rolls

View More View Less
  • 1 Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/Forecast Systems Laboratory, Boulder, Colorado
  • | 2 Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois
  • | 3 National Severe Storms Laboratory, Norman, Oklahoma
© Get Permissions
Restricted access

Abstract

The results of high-resolution simulations of an idealized dryline environment are discussed. The use of a single high-resolution domain, combined with accurate advection numerics and minimized numerical filtering, allows the explicit resolution of large horizontal convective roll (HCR) circulations and their daytime evolution. The horizontal convective rolls are oriented in the direction of the lower planetary boundary layer (PBL) wind shear. By midafternoon a north–south-oriented dryline develops near the center of the simulation domain with the PBL circulations from both sides intersecting the dryline at multiple locations. West of the dryline, the HCR bands evolve into open convective cell (OCC) structures having stronger and deeper vertical circulations compared to the OCCs and HCRs to the east. The OCCs and HCRs east of the dryline impact the dryline and convective cloud location by modulating the low-level moisture and upslope easterly flow. The interaction between OCC and HCR circulations and the dryline appears primarily responsible for creating a considerable amount of along-line variation in the dryline characteristics.

Many shallow convective clouds develop along and west of the dryline over the OCC and HCR updrafts as well as OCC–dryline and HCR–dryline intersection points. The shallow convective clouds evolve into deep convective clouds where OCCs and HCRs to the east intersect the dryline near the same location. When the cumulus clouds move to the east of the dryline and remain over an OCC/HCR updraft, the persistent low-level lifting permits the convective updraft to overcome the cap east of the dryline and directly lift near-surface moisture to its level of free convection.

Corresponding author address: Steven E. Peckham, NOAA/FSL, R/FSI, DSRC, 325 Broadway, Boulder, CO 80305. Email: steven.peckham@noaa.gov

Abstract

The results of high-resolution simulations of an idealized dryline environment are discussed. The use of a single high-resolution domain, combined with accurate advection numerics and minimized numerical filtering, allows the explicit resolution of large horizontal convective roll (HCR) circulations and their daytime evolution. The horizontal convective rolls are oriented in the direction of the lower planetary boundary layer (PBL) wind shear. By midafternoon a north–south-oriented dryline develops near the center of the simulation domain with the PBL circulations from both sides intersecting the dryline at multiple locations. West of the dryline, the HCR bands evolve into open convective cell (OCC) structures having stronger and deeper vertical circulations compared to the OCCs and HCRs to the east. The OCCs and HCRs east of the dryline impact the dryline and convective cloud location by modulating the low-level moisture and upslope easterly flow. The interaction between OCC and HCR circulations and the dryline appears primarily responsible for creating a considerable amount of along-line variation in the dryline characteristics.

Many shallow convective clouds develop along and west of the dryline over the OCC and HCR updrafts as well as OCC–dryline and HCR–dryline intersection points. The shallow convective clouds evolve into deep convective clouds where OCCs and HCRs to the east intersect the dryline near the same location. When the cumulus clouds move to the east of the dryline and remain over an OCC/HCR updraft, the persistent low-level lifting permits the convective updraft to overcome the cap east of the dryline and directly lift near-surface moisture to its level of free convection.

Corresponding author address: Steven E. Peckham, NOAA/FSL, R/FSI, DSRC, 325 Broadway, Boulder, CO 80305. Email: steven.peckham@noaa.gov

Save