• Aagaard, K., , and E. C. Carmack, 1989: The role of sea ice and other freshwater in the Arctic circulation. J. Geophys. Res, 94 , 305311.

    • Search Google Scholar
    • Export Citation
  • Arfeuille, G., , L. A. Maysak, , and L-B. Tremblay, 2000: Simulation of the interannual variability of the wind-driven Arctic sea-ice cover during 1958–1998. Climate Dyn, 16 , 107121.

    • Search Google Scholar
    • Export Citation
  • Busch, N., , U. Ebel, , H. Kraus, , and E. Schaller, 1982: The structure of the subpolar inversion-capped ABL. Arch. Meteor. Geophys. Bioklimatol, 31A , 118.

    • Search Google Scholar
    • Export Citation
  • Curry, J., 1983: On the formation of polar continental air. J. Atmos. Sci, 40 , 22782292.

  • Deser, C., , and M. L. Blackmon, 1993: Surface climate variations over the North Atlantic Ocean during winter: 1900–1989. J. Climate, 6 , 17431754.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , J. E. Walsh, , and M. S. Timlin, 2000: Arctic sea ice variability in the context of recent atmospheric circulation trends. J. Climate, 13 , 617633.

    • Search Google Scholar
    • Export Citation
  • Dickson, R. R., 1988: Great Salinity Anomaly in the northern North Atlantic 1968–1982. Progress in Oceanography, Vol. 20, Pergamon Press, 103–151.

    • Search Google Scholar
    • Export Citation
  • Dickson, R. R., and Coauthors, 2000: The Arctic Ocean response to the North Atlantic Oscillation. J. Climate, 13 , 26712696.

  • Dong, B-W., , and R. T. Sutton, 2002: Adjustment of the coupled ocean–atmosphere system to a sudden change in the thermohaline circulation. Geophys. Res. Lett.,29, 1728, doi:10.1029/ 2002GL015229.

    • Search Google Scholar
    • Export Citation
  • Gamo, M., 1996: Thickness of the dry convection and large-scale subsidence above deserts. Bound.-Layer Meteor, 79 , 265278.

  • Gao, D-Y., , and B-Y. Wu, 1998: A preliminary study on decadal oscillation and its oscillation source of sea–ice–air system in the Northern Hemisphere. Polar Meteor. Glaciol, 12 , 6878.

    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., 1993: An Arctic source for the great salinity anomaly: A simulation of the Arctic ice–ocean system for 1955–1975. J. Geophys. Res, 98 , 1639716410.

    • Search Google Scholar
    • Export Citation
  • Herman, G. F., , and W. T. Johnson, 1978: The sensitivity of the general circulation to Arctic sea ice boundaries: A numerical experiment. Mon. Wea. Rev, 106 , 16491664.

    • Search Google Scholar
    • Export Citation
  • Hilmer, M., , and T. Jung, 2000: Evidence for a recent change in the link between the North Atlantic Oscillation and Arctic sea ice export. Geophys. Res. Lett, 27 , 989992.

    • Search Google Scholar
    • Export Citation
  • Honda, M., , K. Yamazaki, , Y. Tachibana, , and K. Takeuchi, 1996: Influence of Okhotsk sea-ice extent on atmospheric circulation. Geophys. Res. Lett, 23 , 35953598.

    • Search Google Scholar
    • Export Citation
  • Kahl, J. D., 1990: Characteristics of the low-level temperature inversion along the Alaska Arctic coast. Int. J. Climatol, 10 , 537548.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc, 77 , 437471.

  • Lazier, J., 1988: Temperature and salinity changes in the deep Labrador Sea 1962–1986. Deep-Sea Res, 35 , 12471253.

  • Lenderink, G., , and R. J. Haarsma, 1996: Modeling convective transitions in the presence of sea ice. J. Phys. Oceanogr, 26 , 14481467.

  • Mauritzen, C., , and S. Häkkinen, 1997: Influence of sea ice on the thermohaline circulation in the Arctic–North Atlantic Ocean. Geophys. Res. Lett, 24 , 32573260.

    • Search Google Scholar
    • Export Citation
  • Mysak, L. A., , and S. B. Power, 1992: Sea-ice anomalies in the western Arctic and Greenland–Iceland sea and their relation to an interdecaldal climate cycle. Climatol. Bull, 26 , 147176.

    • Search Google Scholar
    • Export Citation
  • Mysak, L. A., , and S. A. Venegas, 1998: Decadal climate oscillation in the Arctic: A new feedback loop for atmosphere–ice–ocean interactions. Geophys. Res. Lett, 25 , 36073610.

    • Search Google Scholar
    • Export Citation
  • Mysak, L. A., , D. K. Manak, , and R. F. Marsden, 1990: Sea-ice anomalies observed in the Greenland and Labrador Seas during 1901–1984 and their relation to an interdecadal Arctic climate cycle. Climate Dyn, 5 , 111133.

    • Search Google Scholar
    • Export Citation
  • Rigor, I. G., , J. M. Walsh, , and R. L. Colony, 2002: Response of sea ice to the Arctic Oscillation. J. Climate, 15 , 26482663.

  • Serreze, M. C., , J. D. Kahl, , and R. C. Schnell, 1992: Low-level inversions of the Eurasian Arctic and comparisons with Soviet drifting station data. J. Climate, 5 , 615629.

    • Search Google Scholar
    • Export Citation
  • Shinoda, M., , and H. Utsugi, 2001: Spring snow-disappearance timing and its possible influences on temperature fields over central Eurasia. J. Meteor. Soc. Japan, 79 , 3759.

    • Search Google Scholar
    • Export Citation
  • Skeie, P., 2000: Meridional flow variability over the Nordic Seas in the Arctic Oscillation framework. Geophys. Res. Lett, 27 , 25692572.

    • Search Google Scholar
    • Export Citation
  • Slonosky, V. C., , L. A. Mysak, , and J. Derome, 1997: Linking Arctic sea ice and atmospheric circulation anomalies on interannual and decadal timescales. Atmos.–Ocean, 35 , 333366.

    • Search Google Scholar
    • Export Citation
  • Tremblay, L-B., , and L. A. Mysak, 1997: Modeling sea ice as a granular material, including the dilatancy effect. J. Phys. Oceanogr, 27 , 23422360.

    • Search Google Scholar
    • Export Citation
  • Tremblay, L-B., , and L. A. Mysak, 1998: On the origin and evolution of sea ice anomalies in the Beaufort–Chukchi Sea. Climate Dyn, 14 , 451460.

    • Search Google Scholar
    • Export Citation
  • Vavrus, S., , and S. P. Harrison, 2003: The impact of sea-ice dynamics on the Arctic climate system. Climate Dyn, 20 , 741757.

  • Vinje, T., 2001a: Fram Strait ice fluxes and atmospheric circulation: 1950–2000. J. Climate, 14 , 35083517.

  • Vinje, T., 2001b: Anomalies and trends of sea ice extent and atmospheric circulation in the Nordic Seas during the period 1864–1998. J. Climate, 14 , 255267.

    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., 1983: Role of sea ice in climate variability: Theories and evidence. Atmos.–Ocean, 21 , 229242.

  • Walsh, J. E., , and W. L. Chapman, 1990: Arctic contribution to upper-ocean variability in the North Atlantic. J. Climate, 3 , 14621473.

    • Search Google Scholar
    • Export Citation
  • Wang, J., , and M. Ikeda, 2000: Arctic Oscillation and Arctic sea-ice oscillation. Geophys. Res. Lett, 27 , 12871290.

  • Wu, B-Y., , and J. Wang, 2002: Possible impacts of winter Arctic Oscillation on the Siberian High, the east Asian winter monsoon and sea-ice. Adv. Atmos. Sci, 19 , 297320.

    • Search Google Scholar
    • Export Citation
  • Wu, B-Y., , D-Y. Gao, , and R-H. Huang, 1997: ENSO events and interannual variations of winter sea-ice in the Greenland, the Kara and the Barents Seas. Chin. Sci. Bull, 42 , 13821385.

    • Search Google Scholar
    • Export Citation
  • Wu, B-Y., , R-H. Huang, , and D-Y. Gao, 1999: Impact of variations of winter sea-ice extents in the Kara/Barents Seas on winter monsoon over east Asia. Acta Meteor. Sin, 13 , 141153.

    • Search Google Scholar
    • Export Citation
  • Wu, B-Y., , R-H. Huang, , and D-Y. Gao, 2001: Arctic sea ice bordering on the North Atlantic and interannual climate variations. Chin. Sci. Bull, 46 , 162165.

    • Search Google Scholar
    • Export Citation
  • Wu, B-Y., , R-H. Huang, , and D-Y. Gao, 2002: Numerical simulations on effects of variation of sea ice thickness and extent on atmospheric circulation. Acta Meteor. Sin, 16 , 150164.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 16 16 2
PDF Downloads 21 21 2

Possible Feedback of Winter Sea Ice in the Greenland and Barents Seas on the Local Atmosphere

View More View Less
  • 1 Chinese Academy of Meteorological Sciences, Beijing, China, and Institute of Marine Sciences, University of Alaska, Fairbanks, Fairbanks, Alaska
  • | 2 International Arctic Research Center, University of Alaska, Fairbanks, Fairbanks, Alaska
© Get Permissions
Restricted access

Abstract

Using monthly Arctic sea ice concentration data (1953–95) and the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis dataset (1958–99), possible feedbacks of sea ice variations in the Greenland and Barents Seas to the atmosphere are investigated. Winter (February–April) sea ice anomalies in the Greenland and Barents Seas display important feedback influences on the atmospheric boundary layer in terms of both thermodynamic and dynamic processes. The vertical gradients of potential pseudo-equivalent temperature (θse) between 850 and 700 hPa are greater over sea ice than over open water, implying that a more stable boundary layer forms below 700 hPa over sea ice. The effects of temperature advection are shown to account for a relatively small percentage of the temperature variance in area of sea ice feedbacks. Horizontal and vertical variations of the effects of sea ice on temperature in the Nordic and Barents Seas create the potential for dynamical influences on the atmospheric boundary layer through vertical motion induced by the pressure anomalies in the boundary layer.

Corresponding author address: Dr. Bingyi Wu, Chinese Academy of Meteorlogical Sciences, Beijing 100081, China. Email: wby@cams.cma.gov.cn

Abstract

Using monthly Arctic sea ice concentration data (1953–95) and the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis dataset (1958–99), possible feedbacks of sea ice variations in the Greenland and Barents Seas to the atmosphere are investigated. Winter (February–April) sea ice anomalies in the Greenland and Barents Seas display important feedback influences on the atmospheric boundary layer in terms of both thermodynamic and dynamic processes. The vertical gradients of potential pseudo-equivalent temperature (θse) between 850 and 700 hPa are greater over sea ice than over open water, implying that a more stable boundary layer forms below 700 hPa over sea ice. The effects of temperature advection are shown to account for a relatively small percentage of the temperature variance in area of sea ice feedbacks. Horizontal and vertical variations of the effects of sea ice on temperature in the Nordic and Barents Seas create the potential for dynamical influences on the atmospheric boundary layer through vertical motion induced by the pressure anomalies in the boundary layer.

Corresponding author address: Dr. Bingyi Wu, Chinese Academy of Meteorlogical Sciences, Beijing 100081, China. Email: wby@cams.cma.gov.cn

Save