Abstract
In operational applications lateral-boundary coupling data are provided to one-way nested limited-area models with time intervals of more than an order of magnitude larger than the time step of the coupled model. In practice, these fixed coupling-update frequencies are established by common-sense guesswork and by technical restrictions rather than by rigorous methods. As a result, situation-dependent failures are never completely excluded when coupling data enter the domain more rapidly than can be sampled by the a priori fixed frequency. To avoid misinterpreting such failures, the data transfer between the coupling and the coupled model should be monitored.
The present paper approaches this as a problem of undersampling. It investigates how the coupling-update frequency can be monitored by using a digital recursive filter in the coupling model. A response function for such a filter is derived. Its implementation in a NWP model is discussed and some extensive tests are presented. A possible application is discussed in which this monitoring is used for assessing the data transfer to the coupled model and additionally for adapting the coupling updates to the actual meteorological content of the coupling-model output.
Corresponding author address: Piet Termonia, Royal Meteorological Institute of Belgium, Ringlaan 3, B-1180 Brussels, Belgium. Email: Piet.Termonia@oma.be