• Alpert, P., M. Tsidulko, S. Krichak, and U. Stein, 1996: A multi-stage evolution of an ALPEX cyclone. Tellus, 48A , 209220.

  • Anthes, R. A., Y-H. Kuo, S. G. Benjamin, and Y-F. Li, 1982: The evolution of the mesoscale environment of severe local storms: Preliminary modeling results. Mon. Wea. Rev, 110 , 11871213.

    • Search Google Scholar
    • Export Citation
  • Baker, R. D., B. H. Lynn, A. Boone, W-K. Tao, and J. Simpson, 2001: The influence of soil moisture, coastline curvature, and land-breeze circulations on sea-breeze-initiated precipitation. J. Hydrometeor, 2 , 193211.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V., and H. T. Ochs, 1995: Collisions between small precipitation drops. Part II: Formulas for coalescence, temporary coalescence, and satellites. J. Atmos. Sci, 52 , 39773996.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., D-L. Zhang, and J. Mailhot, 1994: Numerical prediction of the 10–11 June 1985 squall line with the Canadian Regional Finite-Element Model. Wea. Forecasting, 9 , 157172.

    • Search Google Scholar
    • Export Citation
  • Berry, E. X., and R. J. Reinhardt, 1974: An analysis of cloud drop growth by collection. Part I: Double distributions. J. Atmos. Sci, 31 , 18141824.

    • Search Google Scholar
    • Export Citation
  • Bleck, R., 1970: A fast approximative method for integrating the stochastic coalescence equation. J. Geophys. Res, 75 , 51655171.

  • Bott, A., 1998: A flux method for the numerical solution of the stochastic collection equation. J. Atmos. Sci, 55 , 22842293.

  • Braun, S. A., 2002: A cloud-resolving simulation of Hurricane Bob (1991): Storm structure and eyewall buoyancy. Mon. Wea. Rev, 130 , 15731592.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell, and R. A. Maddox, 1992: On the use of mesoscale and cloud-scale models in operational forecasting. Wea. Forecasting, 7 , 120133.

    • Search Google Scholar
    • Export Citation
  • Chen, C., C. H. Bishop, G. S. Lai, and W-K. Tao, 1997: Numerical simulations of an observed narrow cold-frontal rainband. Mon. Wea. Rev, 125 , 10271045.

    • Search Google Scholar
    • Export Citation
  • Coleman, H., and J. Marwitz, 2002: Thermodynamic and kinematic structure of a snowband and freezing rain event during STORM-FEST. Wea. Forecasting, 17 , 2754.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State–NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev, 121 , 14931513.

    • Search Google Scholar
    • Export Citation
  • Elmore, K. L., D. J. Stensrud, and K. C. Crawford, 2002: Ensemble cloud model applications to forecasting thunderstorms. J. Appl. Meteor, 41 , 363383.

    • Search Google Scholar
    • Export Citation
  • Falkovich, G., A. Fouxon, and M. G. Stepanov, 2002: Acceleration of rain initiation by cloud turbulence. Nature, 419 , 151154.

  • Ferrier, S. B., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci, 51 , 249280.

  • Ferrier, S. B., J. Simpson, and W-K. Tao, 1996: Factors responsible for precipitation efficiencies in midlatitude and tropical squall simulations. Mon. Wea. Rev, 124 , 21002125.

    • Search Google Scholar
    • Export Citation
  • Grell, G., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 121 pp.

    • Search Google Scholar
    • Export Citation
  • Hall, W. D., 1980: A detailed microphysical model within a two-dimensional dynamic framework: Model description and preliminary results. J. Atmos. Sci, 37 , 24862507.

    • Search Google Scholar
    • Export Citation
  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice crystals during the riming process. Nature, 249 , 2628.

  • Halverson, J., M. Garstang, J. Scala, and W-K. Tao, 1996: Water and energy budgets of a Florida mesoscale convective system: A combined observational and modeling study. Mon. Wea. Rev, 124 , 11611180.

    • Search Google Scholar
    • Export Citation
  • Halverson, J., B. S. Ferrier, T. M. Rickenbach, J. Simpson, and W-K. Tao, 1999: An ensemble of convective systems on 11 February 1993 during TOGA COARE: Morphology, rainfall characteristics, and anvil cloud interactions. Mon. Wea. Rev, 127 , 12081228.

    • Search Google Scholar
    • Export Citation
  • Harshvardhan, S. E. Schwartz, C. M. Benkovitz, and G. Guo, 2002: Aerosol influence on cloud microphysics examined by satellite measurements and chemical transport modeling. J. Atmos. Sci, 59 , 714725.

    • Search Google Scholar
    • Export Citation
  • Hu, Z., and R. C. Srivastava, 1995: Evolution of raindrop size distribution by coalescence, breakup, and evaporation: Theory and observations. J. Atmos. Sci, 52 , 17611783.

    • Search Google Scholar
    • Export Citation
  • Hudson, J. G., 1984: Cloud condensation nuclei measurements within clouds. J. Climate Appl. Meteor, 23 , 4251.

  • Hudson, J. G., 1993: Cloud condensational nuclei near marine cumulus. J. Geophys. Res, 98 , 26932702.

  • Hudson, J. G., and P. R. Frisbie, 1991: Cloud condensation nuclei near marine stratus. J. Geophys. Res, 96 , 2079520808.

  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/ detraining plume model. J. Atmos. Sci, 47 , 27842802.

  • Kaufman, Y. J., and T. Nakajima, 1993: Effect of Amazon smoke on cloud microphysics and albedo-analysis from satellite imagery. J. Appl. Meteor, 32 , 729744.

    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr., No. 10, Amer. Meteor. Soc., 84 pp.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., and I. Sednev, 1996: Simulation of precipitation formation in the eastern Mediterranean coastal zone using a spectral microphysics cloud ensemble model. Atmos. Res, 43 , 77110.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., I. Sednev, and V. Khvorostyanov, 1996: Simulation of coastal circulation in the eastern Mediterranean using a spectral microphysics cloud ensemble model. J. Climate, 9 , 32983316.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., A. Pokrovsky, and I. Sednev, 1999: Effects of cloud-aerosol interaction on cloud-microphysics, precipitation formation and size distribution of atmospheric aerosol: Numerical experiments with a spectral microphysics cloud model. Atmos. Res, 52 , 195220.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak, 2000: Notes on the state-of-the art numerical modeling of cloud microphysics. Atmos. Res, 55 , 159224.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., M. Pinsky, M. Shapiro, and A. Pokrovsky, 2001a: Collision rate of small graupel and water drops. J. Atmos. Sci, 58 , 25712595.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., D. Rosenfeld, and A. Pokrovsky, 2001b: Simulating convective clouds with sustained supercooled liquid water down to −37.5°C using a spectral microphysics model. Geophys. Res. Lett, 28 , 38873890.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., A. Pokrovsky, M. Pinsky, A. Seifert, and V. Phillips, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds by using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci, 61 , 29632892.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., and K. Sassen, 1998: Cirrus cloud simulation using explicit microphysics and radiation. Part I: Model description. J. Atmos. Sci, 55 , 18081821.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., A. Khain, and E. Kogteva, 1989: A two-dimensional non-stationary microphysical model of a three-phase convective cloud and evaluation of the effects of seeding by crystallizing reagent. Sov. Meteor. Hydrol, 5 , 3345.

    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., 1991: The simulation of a convective cloud in a 3-D model with explicit microphysics. Part I: Model description and sensitivity experiments. J. Atmos. Sci, 48 , 11601189.

    • Search Google Scholar
    • Export Citation
  • Low, T. B., and R. List, 1982: Collision, coalescence, and breakup of raindrops. Part II: Parameterization of fragment size distributions. J. Atmos. Sci, 39 , 16071618.

    • Search Google Scholar
    • Export Citation
  • Lynn, B. H., and Coauthors, 2001: Improved simulation of Florida summer convection using the PLACE land model and a 1.5-order turbulence parameterization coupled to the Penn State– NCAR Mesoscale Model. Mon. Wea. Rev, 129 , 14411461.

    • Search Google Scholar
    • Export Citation
  • Lynn, B. H., A. P. Khain, J. Dudhia, D. Rosenfeld, A. Pokrovsky, and A. Seifert, 2005: Spectral (bin) microphysics coupled with a mesoscale model (MM5). Part II: Simulation of a CaPE rain event with a squall line. Mon. Wea. Rev, 133 , 5971.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops with size. J. Meteor, 5 , 165166.

  • Martinsson, B. G., and Coauthors, 1999: Droplet nucleation and growth in orographic clouds in relation to the aerosol population. Atmos. Res, 50 , 289315.

    • Search Google Scholar
    • Export Citation
  • Mazin, I. P., and S. M. Shmeter, 1983: Clouds, Their Structure and Formation. Gidrometeoizdat, 279 pp.

  • McCumber, M., W-K. Tao, J. Simpson, R. Penc, and S-T. Soong, 1991: Comparison of ice-phase microphysical parameterization schemes using numerical simulations of tropical convection. J. Appl. Meteor, 30 , 9851004.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., and W. R. Cotton, 1992: Evaluation of the potential for wintertime quantitative precipitation forecasting over mountainous terrain with an explicit cloud model. Part I: Two-dimensional sensitivity experiments. J. Appl. Meteor, 31 , 2650.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor, 31 , 708721.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1995: A comparison of seeded and nonseeded orographic cloud simulations with an explicit cloud model. J. Appl. Meteor, 34 , 834846.

    • Search Google Scholar
    • Export Citation
  • Molders, N., M. Laube, and G. Kramm, 1995: On the parameterization of ice microphysics in a mesoscale alpha weather forecast model. Atmos. Res, 38 , 207235.

    • Search Google Scholar
    • Export Citation
  • Montmerle, T., A. Caya, and I. Zawadzki, 2001: Simulation of a midlatitude convective storm initialized with bistatic Doppler radar data. Mon. Wea. Rev, 129 , 19491967.

    • Search Google Scholar
    • Export Citation
  • Ovtchinnikov, M., and Y. I. Kogan, 2000: An investigation of ice production mechanisms in small cumuliform clouds using a 3D model with explicit microphysics. Part I: Model description. J. Atmos. Sci, 57 , 30043020.

    • Search Google Scholar
    • Export Citation
  • Panegrossi, G., and Coauthors, 1998: Use of cloud model microphysics for passive microwave-based precipitation retrieval: Significance of consistency between model and measurement manifolds. J. Atmos. Sci, 55 , 16441673.

    • Search Google Scholar
    • Export Citation
  • Pawlowska, H., and J-L. Brenguier, 1998: Microphysical properties of marine stratocumulus clouds. Preprints, Conf. on Cloud Physics, Everett, WA, Amer. Meteor. Soc., 310–313.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M., and A. P. Khain, 1998: Some effects of cloud turbulence on water–ice and ice–ice collisions. Atmos. Res, 47–48 , 6986.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M., and A. P. Khain, 2002: Effect of in-cloud nucleation and turbulence on droplet spectrum formation in cumulus clouds. Quart. J. Roy. Meteor. Soc, 128 , 501533.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M., A. P. Khain, D. Rosenfeld, and A. Pokrovsky, 1998: Comparison of collision velocity differences of drops and graupel particles in a very turbulent cloud. Atmos. Res, 49 , 99113.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M., A. P. Khain, and M. Shapiro, 2001: Collision efficiency of drops in a wide range of Reynolds numbers: Effects of pressure on spectrum evolution. J. Atmos. Sci, 58 , 742764.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., 1995: A new look at homogeneous ice nucleation in supercooled water drops. J. Atmos. Sci, 52 , 19241933.

  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2d ed. Kluwer Academic, 914 pp.

  • Rasmussen, R. M., I. Gersedi, G. Thompson, K. Manning, and E. Karplus, 2002: Freezing drizzle formation in stably stratified layer clouds: The role of radiative cooling of cloud droplets, cloud condensation nuclei, and ice initiation. J. Atmos. Sci, 59 , 837860.

    • Search Google Scholar
    • Export Citation
  • Reisin, T., Z. Levin, and S. Tzvion, 1996: Rain production in convective clouds as simulated in an axisymmetric model with detailed microphysics. Part I: Description of the model. J. Atmos. Sci, 53 , 497519.

    • Search Google Scholar
    • Export Citation
  • Reisner, R., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc, 124 , 10711107.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. Pergamon, 293 pp.

  • Rosenfeld, D., and W. L. Woodley, 2000: Convective clouds with sustained highly supercooled liquid water down to −37.5°C. Nature, 405 , 440442.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., Y. Rudich, and R. Lahav, 2001: Desert dust suppressing precipitation—A possible desertification feedback loop. Proc. Natl. Acad. Sci., USA, 98 , 59755980.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., R. Lahav, A. Khain, and M. Pinsky, 2002: The role of sea spray in cleaning air pollution over ocean via cloud processes. Science, 297 , 16671670.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci, 41 , 29492972.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., W. Zhien, V. I. Khvorostyanov, G. L. Stephens, and A. Bennedetti, 2002: Cirrus cloud ice water content radar algorithm evaluation using an explicit cloud microphysical model. J. Appl. Meteor, 41 , 620628.

    • Search Google Scholar
    • Export Citation
  • Schultz, P., 1995: An explicit cloud physics parameterization for operational numerical weather prediction. Mon. Wea. Rev, 123 , 33313343.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., A. Khain, U. Blahak, and K. Beheng, 2005: Possible effects of collisional breakup on mixed-phase deep convection simulated by a spectral (bin) cloud model. J. Atmos. Sci., in press.

    • Search Google Scholar
    • Export Citation
  • Shafran, P. C., N. L. Seaman, and G. A. Gayno, 2000: Evaluation of numerical predictions of boundary layer structure during the Lake Michigan Ozone Study. J. Appl. Meteor, 39 , 412426.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., and W-K. Tao, 1993: Goddard Cumulus Ensemble model. Part 2: Applicatons for studying cloud precipitating processes and for NASA TRMM. Terr. Atmos. Oceanic Sci, 4 , 73116.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., T. Endoh, and G. Wakahama, 1991: Vapor diffusional growth of free-falling snow crystals between −3° and −23°C. J. Meteor. Soc. Japan, 69 , 1530.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., and J. Simpson, 1984: Cloud interactions and merging: Numerical simulations. J. Atmos. Sci, 41 , 29012917.

  • Tao, W-K., and Coauthors, 2003: Microphysics, radiation and surface processes in a non-hydrostatic model. Meteor. Atmos. Phys, 82 , 97137.

    • Search Google Scholar
    • Export Citation
  • Tremblay, A., and A. Glazer, 2000: An improved modeling scheme for freezing precipitation forecasts. Mon. Wea. Rev, 128 , 12891308.

  • Vali, G., 1975: Remarks on the mechanism of atmospheric ice nucleation. Proc. Eighth Int. Conf. on Nucleation, Leningrad, USSR, Gidrometeoizdat, 265–269.

    • Search Google Scholar
    • Export Citation
  • Vali, G., 1994: Freezing rate due to heterogeneous nucleation. J. Atmos. Sci, 51 , 18431856.

  • Wang, Y., 2001: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part I: Model description and control experiment. Mon. Wea. Rev, 129 , 13701394.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and R. B. Wilhelmson, 1995: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci, 52 , 26752704.

    • Search Google Scholar
    • Export Citation
  • Yau, M. K., and R. Michaud, 1982: Numerical simulation of a cumulus ensemble in three dimensions. J. Atmos. Sci, 39 , 10621079.

  • Yin, Y., Z. Levin, T. Reisin, and S. Tzivion, 2000: Seeding convective clouds with hygroscopic flares: Numerical simulations using a cloud model with detailed microphysics. J. Appl. Meteor, 39 , 14601472.

    • Search Google Scholar
    • Export Citation
  • Zeng, Z., S. E. Yuter, R. A. Houze Jr., and D. E. Kingsmill, 2001: Microphysics of the rapid development of heavy convective precipitation. Mon. Wea. Rev, 129 , 18821904.

    • Search Google Scholar
    • Export Citation
  • Zhang, D-L., and E. Altshuler, 1999: The effects of dissipative heating on hurricane intensity. Mon. Wea. Rev, 127 , 30323038.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 9 9 9
PDF Downloads 14 14 14

Spectral (Bin) Microphysics Coupled with a Mesoscale Model (MM5). Part I: Model Description and First Results

View More View Less
  • 1 The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
  • | 2 National Center for Atmospheric Research, Boulder, Colorado
  • | 3 The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
  • | 4 University of Karlsruhe, Karlsruhe, Germany
Restricted access

Abstract

Considerable research investments have been made to improve the accuracy of forecasting precipitation systems in cloud-resolving, mesoscale atmospheric models. Yet, despite a significant improvement in model grid resolution and a decrease in initial condition uncertainty, the accurate prediction of precipitation amount and distribution still remains a difficult problem. Now, the development of a fast version of spectral (bin) microphysics (SBM Fast) offers significant potential for improving the description of precipitation-forming processes in mesoscale atmospheric models.

The SBM Fast is based on solving a system of equations for size distribution functions for water drops and three types of ice crystals (plates, columns, and dendrites), as well as snowflakes, graupel, and hail/frozen drops. Ice processes are represented by three size distributions, instead of six in the original SBM code. The SBM uses first principles to simulate microphysical processes such as diffusional growth and collision. A budget for aerosols is used to obtain the spectrum of condensation nuclei, which is used to obtain the initial drop spectrum. Hence, SBM allows one to take into account aerosol effects on precipitation, and corresponding cloud effects on the atmospheric aerosol concentration and distribution. SBM Fast has been coupled with the three-dimensional fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5), which allows SBM Fast to simulate microphysics within a realistic, time-varying mesoscale environment.

This paper describes the first three-dimensional SBM mesoscale model and presents results using 1-km resolution to simulate initial development of a cloud system over Florida on 27 July 1991. The focus is on initial cloud development along the west coast, just prior to sea-breeze formation. The results indicate that the aerosol concentration had a very important impact on cloud dynamics, microphysics, and rainfall.

Vertical cross sections of clouds obtained using SBM Fast are compared to those from a version of the “Reisner2” bulk-parameterization scheme that uses the Kessler autoconversion formula. The results show that this version of “Reisner2” produced vertically upright clouds that progressed very quickly from initial cloud formation to raindrop formation. In contrast, clouds obtained using SBM were relatively long lasting with greater production of stratiform clouds.

Corresponding author address: Prof. Alexander P. Khain, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel. Email: Khain@vms.huji.ac.il

Abstract

Considerable research investments have been made to improve the accuracy of forecasting precipitation systems in cloud-resolving, mesoscale atmospheric models. Yet, despite a significant improvement in model grid resolution and a decrease in initial condition uncertainty, the accurate prediction of precipitation amount and distribution still remains a difficult problem. Now, the development of a fast version of spectral (bin) microphysics (SBM Fast) offers significant potential for improving the description of precipitation-forming processes in mesoscale atmospheric models.

The SBM Fast is based on solving a system of equations for size distribution functions for water drops and three types of ice crystals (plates, columns, and dendrites), as well as snowflakes, graupel, and hail/frozen drops. Ice processes are represented by three size distributions, instead of six in the original SBM code. The SBM uses first principles to simulate microphysical processes such as diffusional growth and collision. A budget for aerosols is used to obtain the spectrum of condensation nuclei, which is used to obtain the initial drop spectrum. Hence, SBM allows one to take into account aerosol effects on precipitation, and corresponding cloud effects on the atmospheric aerosol concentration and distribution. SBM Fast has been coupled with the three-dimensional fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5), which allows SBM Fast to simulate microphysics within a realistic, time-varying mesoscale environment.

This paper describes the first three-dimensional SBM mesoscale model and presents results using 1-km resolution to simulate initial development of a cloud system over Florida on 27 July 1991. The focus is on initial cloud development along the west coast, just prior to sea-breeze formation. The results indicate that the aerosol concentration had a very important impact on cloud dynamics, microphysics, and rainfall.

Vertical cross sections of clouds obtained using SBM Fast are compared to those from a version of the “Reisner2” bulk-parameterization scheme that uses the Kessler autoconversion formula. The results show that this version of “Reisner2” produced vertically upright clouds that progressed very quickly from initial cloud formation to raindrop formation. In contrast, clouds obtained using SBM were relatively long lasting with greater production of stratiform clouds.

Corresponding author address: Prof. Alexander P. Khain, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel. Email: Khain@vms.huji.ac.il

Save