• Ackerman, B., 1963: The distribution of liquid water in hurricanes. National Hurricane Research Project Rep. 62, U.S. Weather Bureau, 41 pp.

  • Ayotte, B. A., and H. J. S. Fernando, 1994: The motion of a turbulent thermal in the presence of background rotation. J. Atmos. Sci., 51 , 19891994.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., E. J. Zipser, D. Jorgensen, and F. Marks Jr., 1983: Mesoscale and convective structure of a hurricane rainband. J. Atmos. Sci., 40 , 21272137.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., 1983: An analysis and comparison of five water droplet measuring devices. J. Climate Appl. Meteor., 22 , 891910.

  • Betts, A. K., and M. F. Silva Dias, 1979: Unsaturated downdraft thermodynamics in cumulonimbus. J. Atmos. Sci., 36 , 10611071.

  • Black, M. L., R. W. Burpee, and F. D. Marks Jr., 1996: Vertical motion characteristics of tropical cyclones determined with airborne Doppler radial velocities. J. Atmos. Sci., 53 , 18871909.

    • Search Google Scholar
    • Export Citation
  • Black, P. G., F. D. Marks Jr., and R. A. Black, 1986: Supercell structure in tropical cyclones. Preprints, 23d Conf. on Radar Meteorology, Snowmass, CO, Amer. Meteor. Soc., 255–259.

  • Black, R. A., 1990: Radar reflectivity–ice water content relationships for use above the melting level in hurricanes. J. Appl. Meteor., 29 , 955961.

    • Search Google Scholar
    • Export Citation
  • Black, R. A., and J. Hallett, 1986: Observations of the distribution of ice in hurricanes. J. Atmos. Sci., 43 , 802822.

  • Black, R. A., H. B. Bluestein, and M. L. Black, 1994: Unusually strong vertical motions in a Caribbean hurricane. Mon. Wea. Rev., 122 , 27222739.

    • Search Google Scholar
    • Export Citation
  • Bogner, P. B., G. M. Barnes, and J. L. Franklin, 2000: Conditional instability and shear for six hurricanes over the Atlantic Ocean. Wea. Forecasting, 15 , 192207.

    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108 , 10461053.

  • Braun, S. A., 2002: A cloud-resolving simulation of Hurricane Bob (1991): Storm structure and eyewall buoyancy. Mon. Wea. Rev., 130 , 15731592.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., E. J. Zipser, and S. W. Nesbitt, 2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part I: Quantitative description. Mon. Wea. Rev., 130 , 769784.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., 2003: Buoyancy of convective vertical motions in the inner core of intense hurricanes. Ph.D. dissertation, Colorado State University, 152 pp. [Available from Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523.].

  • Eastin, M. D., P. G. Black, and W. M. Gray, 2002a: Flight-level instrument wetting errors in hurricanes. Part I: Observations. Mon. Wea. Rev., 130 , 825841.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., P. G. Black, and W. M. Gray, 2002b: Flight-level instrument wetting errors in hurricanes. Part II: Implications. Mon. Wea. Rev., 130 , 842851.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., W. M. Gray, and P. G. Black, 2005: Buoyancy of convective vertical motions in the inner core of intense hurricanes. Part II: Case studies. Mon. Wea. Rev., 133 , 209227.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., and G. J. Holland, 1992: Observations of record deep convection in Tropical Cyclone Hilda. Mon. Wea. Rev., 120 , 22402251.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43 , 585604.

    • Search Google Scholar
    • Export Citation
  • Feind, R. E., A. G. Detweiler, and P. L. Smith, 2000: Cloud liquid water measurements on the Armored T-28: Intercomparisons between Johnson–Williams cloud water meter and CSIRO (king) liquid water probe. J. Atmos. Oceanic Technol., 17 , 16301638.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1977: The storm structure and energetics of the tropical cyclone. I. Storm structure. Mon. Wea. Rev., 105 , 11191135.

  • Gamache, J. F., R. A. Houze Jr., and F. D. Marks Jr., 1993: Dual-aircraft investigation of Hurricane Norbert. Part III: Water budget. J. Atmos. Sci., 50 , 32213243.

    • Search Google Scholar
    • Export Citation
  • Gentry, R. C., T. T. Fujita, and R. C. Sheets, 1970: Aircraft, spacecraft, satellite, and radar observations of Hurricane Gladys, 1968. J. Appl. Meteor., 9 , 837850.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1965: Calculations of cumulus draft velocities in hurricanes from aircraft data. J. Appl. Meteor., 4 , 463474.

  • Gray, W. M., and D. J. Shea, 1973: The hurricane’s inner core region. II. Thermal stability and dynamic characteristics. J. Atmos. Sci., 30 , 15651576.

    • Search Google Scholar
    • Export Citation
  • Helfrich, K. R., 1994: Thermals with background rotation and stratification. J. Fluid Mech., 259 , 265280.

  • Heymsfield, G. M., J. B. Halverson, J. Simpson, L. Tian, and T. P. Bui, 2001: ER-2 Doppler radar investigations of the eyewall of Hurricane Bonnie during the Convection and Moisture Experiment-3. J. Appl. Meteor., 40 , 13101330.

    • Search Google Scholar
    • Export Citation
  • Hock, T. F., and J. L. Franklin, 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc., 80 , 407420.

  • Igau, R. C., M. A. LeMone, and D. Wei, 1999: Updraft and downdraft cores in TOGA COARE: Why so many buoyant downdraft cores? J. Atmos. Sci., 56 , 22322245.

    • Search Google Scholar
    • Export Citation
  • Jenkins, G. M., and D. G. Watts, 1968: Spectral Analysis and Its Applications. Holden-Day, 525 pp.

  • Jorgensen, D. P., 1984a: Mesoscale and convective-scale characteristics of mature hurricanes. Part I: General observations by aircraft. J. Atmos. Sci., 41 , 12681285.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., 1984b: Mesoscale and convective-scale characteristics of mature hurricanes. Part II: Inner core structure of Hurricane Allen (1980). J. Atmos. Sci., 41 , 12871311.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., and M. A. LeMone, 1989: Vertical velocity characteristics of oceanic convection. J. Atmos. Sci., 46 , 621640.

  • Jorgensen, D. P., E. J. Zipser, and M. A. LeMone, 1985: Vertical motions in intense hurricanes. J. Atmos. Sci., 42 , 839856.

  • Lawson, R. P., and W. A. Cooper, 1990: Performance of some airborne thermometers in clouds. J. Atmos. Oceanic Technol., 7 , 480494.

  • LeMone, M. A., 1980: On the difficulty of measuring temperature and humidity in clouds: Comments on “Shallow convection on day 261 of GATE: Mesoscale arcs.”. Mon. Wea. Rev., 108 , 17021707.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., D-L. Zhang, and M. K. Yau, 1999: A multiscale numerical study of Hurricane Andrew (1992). Part II: Kinematics and inner-core structures. Mon. Wea. Rev., 127 , 25972616.

    • Search Google Scholar
    • Export Citation
  • Lord, S. J., H. E. Willoughby, and J. M. Piotrowicz, 1984: Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci., 41 , 28362848.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., E. J. Zipser, and M. A. LeMone, 1994: Vertical velocity in oceanic convection off tropical Australia. J. Atmos. Sci., 51 , 31833193.

    • Search Google Scholar
    • Export Citation
  • Malkus, J., and H. Riehl, 1960: On the dynamics and energy transformations in steady-state hurricanes. Tellus, 12 , 120.

  • Malkus, J., C. Ronne, and M. Chaffee, 1961: Cloud patterns in Hurricane Daisy, 1958. Tellus, 13 , 830.

  • Marks Jr., F. D., 1985: Evolution of the structure of precipitation in Hurricane Allen (1980). Mon. Wea. Rev., 113 , 909930.

  • Marks Jr., F. D., and R. A. Houze Jr., 1987: Inner core structure of Hurricane Alicia from airborne Doppler radar observations. J. Atmos. Sci., 44 , 12961317.

    • Search Google Scholar
    • Export Citation
  • Marks Jr., F. D., R. A. Houze Jr., and J. F. Gamache, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert (1948). Part I: Kinematic structure. J. Atmos. Sci., 49 , 919942.

    • Search Google Scholar
    • Export Citation
  • Merceret, F. J., and T. L. Schricker, 1975: A new hot-wire liquid cloud water meter. J. Appl. Meteor., 14 , 319326.

  • Montgomery, M. T., and J. L. Franklin, 1998: An assessment of the balance approximation in hurricanes. J. Atmos. Sci., 55 , 21932200.

  • Riehl, H., 1979: Climate and Weather in the Tropics. Academic Press, 611 pp.

  • Riehl, H., and J. Malkus, 1961: Some aspects of Hurricane Daisy (1958). Tellus, 13 , 181213.

  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic numerical model. J. Atmos. Sci., 44 , 542561.

    • Search Google Scholar
    • Export Citation
  • Samsury, C. E., and E. J. Zipser, 1995: Secondary wind maxima in hurricanes: Airflow and relationship to rainbands. Mon. Wea. Rev., 123 , 35023517.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39 , 378394.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and M. T. Montgomery, 1993: A three-dimensional balance theory for rapidly rotating vortices. J. Atmos. Sci., 50 , 33223335.

    • Search Google Scholar
    • Export Citation
  • Shea, D. J., and W. M. Gray, 1973: The hurricane’s inner core region. I. Symmetric and asymmetric structure. J. Atmos. Sci., 30 , 15441564.

    • Search Google Scholar
    • Export Citation
  • Sheets, R. C., 1969: Some mean hurricane soundings. J. Appl. Meteor., 8 , 134146.

  • Spyers-Duran, P. A., 1968: Comparative measurements of cloud liquid water using heated wire and cloud replicating devices. J. Appl. Meteor., 7 , 674678.

    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., 1987: A model of intense downdrafts driven by the melting and evaporation of precipitation. J. Atmos. Sci., 44 , 17521773.

    • Search Google Scholar
    • Export Citation
  • Wang, J., H. L. Cole, D. J. Carlson, E. R. Miller, K. Beierle, A. Paukkunen, and T. K. Laine, 2002: Corrections of humidity measurement errors from the Vaisala RS80 radiosonde—Application to TOGA COARE data. J. Atmos. Oceanic Technol., 19 , 9811002.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002: Vortex Rossby waves in a numerically simulated tropical cyclone. Part I: Overall structure, potential vorticity, and kinetic energy budgets. J. Atmos. Sci., 59 , 12131238.

    • Search Google Scholar
    • Export Citation
  • Wei, D., A. M. Blyth, and D. J. Raymond, 1998: Buoyancy of convective clouds in TOGA COARE. J. Atmos. Sci., 55 , 33813391.

  • Willoughby, H. E., 1979: Forced secondary circulations in hurricanes. J. Geophys. Res., 84 , 31733183.

  • Willoughby, H. E., 1990: Gradient balance in tropical cyclones. J. Atmos. Sci., 47 , 265274.

  • Willoughby, H. E., and M. B. Chelmow, 1982: Objective determination of hurricane tracks from aircraft observations. Mon. Wea. Rev., 110 , 12981305.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eyewalls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39 , 395411.

    • Search Google Scholar
    • Export Citation
  • Zhang, D-L., Y. Liu, and M. K. Yau, 2000: A multiscale numerical study of Hurricane Andrew (1992). Part III: Dynamically induced vertical motion. Mon. Wea. Rev., 128 , 37723788.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 2003: Some views on “hot towers” after 50 years of tropical field programs and two years of TRMM data. Cloud Systems, Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM),Meteor. Monogr., No. 51, Amer. Meteor. Soc., 49–58.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4 5 4
PDF Downloads 2 2 2

Buoyancy of Convective Vertical Motions in the Inner Core of Intense Hurricanes. Part I: General Statistics

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 2 Hurricane Research Division, NOAA/AOML, Miami, Florida
Restricted access

Abstract

The buoyancy of hurricane convective vertical motions is studied using aircraft data from 175 radial legs collected in 14 intense hurricanes at four altitudes ranging from 1.5 to 5.5 km. The data of each leg are initially filtered to separate convective-scale features from background mesoscale structure. Convective vertical motion events, called cores, are identified using the criteria that the convective-scale vertical velocity must exceed 1.0 m s−1 for at least 0.5 km. A total of 620 updraft cores and 570 downdraft cores are included in the dataset. Total buoyancy is calculated from convective-scale virtual potential temperature, pressure, and liquid water content using the mesoscale structure as the reference state.

Core properties are summarized for the eyewall and rainband regions at each altitude. Characteristics of core average convective vertical velocity, maximum convective vertical velocity, and diameter are consistent with previous studies of hurricane convection. Most cores are superimposed upon relatively weak mesoscale ascent. The mean eyewall (rainband) updraft core exhibits small, but statistically significant, positive total buoyancy below 4 km (between 2 and 5 km) and a modest increase in vertical velocity with altitude. The mean downdraft core not superimposed upon stronger mesoscale ascent also exhibits positive total buoyancy and a slight decrease in downward vertical velocity with decreasing altitude. Buoyant updraft cores cover less than 5% of the total area in each region but accomplish ∼40% of the total upward transport.

A one-dimensional updraft model is used to elucidate the relative roles played by buoyancy, vertical perturbation pressure gradient forces, water loading, and entrainment in the vertical acceleration of ordinary updraft cores. Small positive total buoyancy values are found to be more than adequate to explain the vertical accelerations observed in updraft core strength, which implies that ordinary vertical perturbation pressure gradient forces are directed downward, opposing the positive buoyancy forces. Entrainment and water loading are also found to limit updraft magnitudes.

The observations support some aspects of both the hot tower hypothesis and symmetric moist neutral ascent, but neither concept appears dominant. Buoyant convective updrafts, however, are integral components of the hurricane’s transverse circulation.

Corresponding author address: Matthew D. Eastin, Department of Math and Computer Science, Central College, 812 University, Pella, IA 50219. Email: eastinm@central.edu

Abstract

The buoyancy of hurricane convective vertical motions is studied using aircraft data from 175 radial legs collected in 14 intense hurricanes at four altitudes ranging from 1.5 to 5.5 km. The data of each leg are initially filtered to separate convective-scale features from background mesoscale structure. Convective vertical motion events, called cores, are identified using the criteria that the convective-scale vertical velocity must exceed 1.0 m s−1 for at least 0.5 km. A total of 620 updraft cores and 570 downdraft cores are included in the dataset. Total buoyancy is calculated from convective-scale virtual potential temperature, pressure, and liquid water content using the mesoscale structure as the reference state.

Core properties are summarized for the eyewall and rainband regions at each altitude. Characteristics of core average convective vertical velocity, maximum convective vertical velocity, and diameter are consistent with previous studies of hurricane convection. Most cores are superimposed upon relatively weak mesoscale ascent. The mean eyewall (rainband) updraft core exhibits small, but statistically significant, positive total buoyancy below 4 km (between 2 and 5 km) and a modest increase in vertical velocity with altitude. The mean downdraft core not superimposed upon stronger mesoscale ascent also exhibits positive total buoyancy and a slight decrease in downward vertical velocity with decreasing altitude. Buoyant updraft cores cover less than 5% of the total area in each region but accomplish ∼40% of the total upward transport.

A one-dimensional updraft model is used to elucidate the relative roles played by buoyancy, vertical perturbation pressure gradient forces, water loading, and entrainment in the vertical acceleration of ordinary updraft cores. Small positive total buoyancy values are found to be more than adequate to explain the vertical accelerations observed in updraft core strength, which implies that ordinary vertical perturbation pressure gradient forces are directed downward, opposing the positive buoyancy forces. Entrainment and water loading are also found to limit updraft magnitudes.

The observations support some aspects of both the hot tower hypothesis and symmetric moist neutral ascent, but neither concept appears dominant. Buoyant convective updrafts, however, are integral components of the hurricane’s transverse circulation.

Corresponding author address: Matthew D. Eastin, Department of Math and Computer Science, Central College, 812 University, Pella, IA 50219. Email: eastinm@central.edu

Save