• Barnes, G. M., E. J. Zipser, D. Jorgensen, and F. Marks Jr., 1983: Mesoscale and convective structure of a hurricane rainband. J. Atmos. Sci., 40 , 21272137.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., J. F. Gamache, M. A. LeMone, and G. J. Stossmeister, 1991: A convective cell in a hurricane rainband. Mon. Wea. Rev., 119 , 776794.

    • Search Google Scholar
    • Export Citation
  • Black, M. L., J. F. Gamache, F. D. Marks Jr., C. E. Samsury, and H. E. Willoughby, 2002: Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Mon. Wea. Rev., 130 , 22912312.

    • Search Google Scholar
    • Export Citation
  • Black, R. A., H. B. Bluestein, and M. L. Black, 1994: Unusually strong vertical motions in a Caribbean hurricane. Mon. Wea. Rev., 122 , 27222739.

    • Search Google Scholar
    • Export Citation
  • Bogner, P. B., G. M. Barnes, and J. L. Franklin, 2000: Conditional instability and shear for six hurricanes over the Atlantic ocean. Wea. Forecasting, 15 , 192207.

    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108 , 10461053.

  • Braun, S. A., 2002: A cloud-resolving simulation of Hurricane Bob (1991): Storm structure and eyewall buoyancy. Mon. Wea. Rev., 130 , 15731592.

    • Search Google Scholar
    • Export Citation
  • Cione, J. J., P. G. Black, and S. H. Houston, 2000: Surface observations within the hurricane environment. Mon. Wea. Rev., 128 , 15501561.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53 , 20762087.

  • DeMaria, M., and J. Kaplan, 1994a: Sea surface temperature and the maximum intensity of Atlantic tropical cyclones. J. Climate, 7 , 13241334.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994b: A statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9 , 209220.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1999: An updated statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic and eastern North Pacific basin. Wea. Forecasting, 14 , 326337.

    • Search Google Scholar
    • Export Citation
  • Dodge, P., R. W. Burpee, and F. D. Marks Jr., 1999: The kinematic structure of a hurricane with sea level pressure less than 900 mb. Mon. Wea. Rev., 127 , 9871004.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., 2003: Buoyancy of convective vertical motions in the inner core of intense hurricanes. Ph.D. dissertation, Colorado State University, 152 pp. [Available from Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523.].

  • Eastin, M. D., W. M. Gray, and P. G. Black, 2005: Buoyancy of convective vertical motions in the inner core of intense hurricanes. Part I: General statistics. Mon. Wea. Rev., 133 , 188208.

    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., G. J. Holland, H. Garrish, M. DeMaria, and C. P. Gaurd, 1992: Is there any hope for tropical cyclone intensity change prediction?—A panel discussion. Bull. Amer. Meteor. Soc., 73 , 264275.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43 , 585604.

    • Search Google Scholar
    • Export Citation
  • Enagonio, J., and M. T. Montgomery, 2001: Tropical cyclogenesis via convectively forced vortex Rossby waves in a shallow water primitive equation model. J. Atmos. Sci., 58 , 685705.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127 , 20442061.

  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129 , 22492269.

    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., S. J. Lord, S. E. Feuer, and F. D. Marks, 1993: The kinematic structure of Hurricane Gloria (1985) determined from nested analyses of dropwindsonde and Doppler radar data. Mon. Wea. Rev., 121 , 24332451.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., and D. J. Shea, 1973: The hurricane’s inner core region. II: Thermal stability and dynamic characteristics. J. Atmos. Sci., 30 , 15651576.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., and W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43 , 15591573.

    • Search Google Scholar
    • Export Citation
  • Hawkins, H. F., and S. M. Imbembo, 1976: The structure of a small, intense hurricane—Inez, 1966. Mon. Wea. Rev., 104 , 418442.

  • Heymsfield, G. M., J. B. Halverson, J. Simpson, L. Tian, and T. P. Bui, 2001: ER-2 Doppler radar investigations of the eyewall of Hurricane Bonnie during the Convection and Moisture Experiment-3. J. Appl. Meteor., 40 , 13101330.

    • Search Google Scholar
    • Export Citation
  • Hock, T. F., and J. L. Franklin, 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc., 80 , 407420.

  • Jones, S. C., 1995: The evolution of vortices in vertical shear. Part II: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121 , 821851.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., 1984a: Mesoscale and convective-scale characteristics of mature hurricanes. Part I: General observations by aircraft. J. Atmos. Sci., 41 , 12681285.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., 1984b: Mesoscale and convective-scale characteristics of mature hurricanes. Part II: Inner core structure of Hurricane Allen (1980). J. Atmos. Sci., 41 , 12871311.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and M. D. Eastin, 2001: Two distinct regimes in the kinematic and thermodynamic structure of the hurricane eye and eyewall. J. Atmos. Sci., 58 , 10791090.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and W. H. Schubert, 2001: Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci., 58 , 21962209.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., B. D. McNoldy, and W. H. Schubert, 2002: Vortical swirls in hurricane eye clouds. Mon. Wea. Rev., 130 , 31443149.

  • Kraft, R. H., 1961: The hurricane’s central pressure and highest wind. Mar. Wea. Log, 5 , 155.

  • Lawrence, M. B., 1999: Eastern North Pacific hurricane season of 1997. Mon. Wea. Rev., 127 , 24402454.

  • Liu, Y., D-L. Zhang, and M. K. Yau, 1997: Multiscale numerical study of Hurricane Andrew (1992). Part I: An explicit simulation. Mon. Wea. Rev., 125 , 25972616.

    • Search Google Scholar
    • Export Citation
  • Marks Jr., F. D., and R. A. Houze Jr., 1987: Inner core structure of Hurricane Alicia from airborne Doppler radar observations. J. Atmos. Sci., 44 , 12961317.

    • Search Google Scholar
    • Export Citation
  • Marks Jr., F. D., R. A. Houze Jr., and J. F. Gamache, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert (1984). Part I: Kinematic structure. J. Atmos. Sci., 49 , 919942.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123 , 435465.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and J. Enagonio, 1998: Tropical cyclogenesis via convectively forced vortex Rossby waves in a three-dimensional quasigeostrophic model. J. Atmos. Sci., 55 , 31763207.

    • Search Google Scholar
    • Export Citation
  • Neumann, C. J., B. J. Jarvinen, C. J. McAdie, and G. R. Hammer, 1999: Tropical cyclones of the North Atlantic Ocean, 1871–1998. Historical Climatology Series Paper 6-2, National Climatic Data Center in Cooperation with the National Hurricane Center, 206 pp.

  • Ooyama, K., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26 , 340.

  • Ooyama, K., 1982: Conceptual evolution of the theory and modeling of the tropical cyclone. J. Meteor. Soc. Japan, 60 , 369380.

  • Parrish, J. R., R. W. Burpee, F. D. Marks, and C. W. Landsea, 1984: Mesoscale and convective-scale characteristics of Hurricane Frederic during landfall. Preprints,. 15th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 415–420.

    • Search Google Scholar
    • Export Citation
  • Pasch, R. J., L. A. Avila, and J. L. Guiney, 2001: Atlantic hurricane season of 1998. Mon. Wea. Rev., 129 , 30863123.

  • Peng, M. S., and R. T. Williams, 1990: Dynamics of vortex asymmetries and their influence on vortex motion on a β-plane. J. Atmos. Sci., 47 , 19872003.

    • Search Google Scholar
    • Export Citation
  • Persing, J., and M. T. Montgomery, 2003: Hurricane superintensity. J. Atmos. Sci., 60 , 23492371.

  • Powell, M. D., 1990: Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118 , 918938.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, F. D. Marks Jr., and J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128 , 16531680.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1993: An improved real-time global sea surface temperature analysis. J. Climate, 6 , 114119.

  • Riehl, H., and J. Malkus, 1961: Some aspects of Hurricane Daisy (1958). Tellus, 13 , 181213.

  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic numerical model. J. Atmos. Sci., 44 , 542561.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eyewall contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56 , 11971223.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39 , 378394.

    • Search Google Scholar
    • Export Citation
  • Wang, J., H. L. Cole, D. J. Carlson, E. R. Miller, K. Beierle, A. Paukkunen, and T. K. Laine, 2002: Corrections of humidity measurement errors from the Vaisala RS80 radiosonde—Application to TOGA COARE data. J. Atmos. Oceanic Technol., 19 , 9811002.

    • Search Google Scholar
    • Export Citation
  • Weatherford, C. L., 1989: The structural evolution of typhoons. Atmospheric Science Paper 446, Department of Atmospheric Science, Colorado State University, 198 pp. [Available from Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523.].

  • Willoughby, H. E., 1990: Temporal changes of the primary circulation in tropical cyclones. J. Atmos. Sci., 47 , 242264.

  • Willoughby, H. E., 1998: Tropical cyclone eye thermodynamics. Mon. Wea. Rev., 126 , 30533067.

  • Willoughby, H. E., and M. B. Chelmow, 1982: Objective determination of hurricane tracks from aircraft observations. Mon. Wea. Rev., 110 , 12981305.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 19 19 19
PDF Downloads 16 16 16

Buoyancy of Convective Vertical Motions in the Inner Core of Intense Hurricanes. Part II: Case Studies

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 2 Hurricane Research Division, NOAA/AOML, Miami, Florida
Restricted access

Abstract

This is the second of two papers on the buoyancy of convective vertical motions in the inner core of intense hurricanes. This paper uses extensive airborne radar, dropwindsonde, and flight-level observations in Hurricanes Guillermo (1997) and Georges (1998) to illustrate typical azimuthal distribution of buoyant convection and demonstrate that the low-level eye can be an important source region for buoyant eyewall convection.

In both hurricanes, eyewall vertical velocity and radar reflectivity are asymmetric and exhibit persistent relationships with the direction of the environmental vertical wind shear. Mesoscale vertical motions exhibit a wavenumber-1 structure with maximum ascent downshear and weak descent upshear. The mesoscale reflectivity maxima are located left-of-shear. Buoyant eyewall updraft cores and transient convective-scale reflectivity cells are predominantly downshear and left-of-shear. Most eyewall downdraft cores that transport significant mass downward are located upshear. Negative buoyancy was most common in left-of-shear downdrafts, with positive buoyancy dominant in upshear downdrafts. Inward-spiraling rainbands located outside the eyewall exhibit upband/downband asymmetries. Upband segments contain more convective reflectivity cells and buoyant updraft cores than the more stratiform downband segments. Equal numbers of downdraft cores are found upband and downband, but the majority exhibit negative buoyancy.

Several buoyant updraft cores encountered in the midlevel eyewall exhibit equivalent potential temperatures (θe) much higher than the θe observed in the low-level eyewall, but equivalent to the θe observed in the low-level eye. Asymmetric low-wavenumber circulations appear responsible for exporting the high-θe eye air into the relatively low-θe eyewall and generating the locally buoyant updraft cores.

Implications of these results upon conceptual models of hurricane structure are discussed. Three mechanisms, whereby an ensemble of asymmetric buoyant convection could contribute to hurricane evolution, are also discussed.

Corresponding author address: Matthew D. Eastin, Department of Math and Computer Science, Central College, 812 University, Pella, IA 50219. Email: eastinm@central.edu

Abstract

This is the second of two papers on the buoyancy of convective vertical motions in the inner core of intense hurricanes. This paper uses extensive airborne radar, dropwindsonde, and flight-level observations in Hurricanes Guillermo (1997) and Georges (1998) to illustrate typical azimuthal distribution of buoyant convection and demonstrate that the low-level eye can be an important source region for buoyant eyewall convection.

In both hurricanes, eyewall vertical velocity and radar reflectivity are asymmetric and exhibit persistent relationships with the direction of the environmental vertical wind shear. Mesoscale vertical motions exhibit a wavenumber-1 structure with maximum ascent downshear and weak descent upshear. The mesoscale reflectivity maxima are located left-of-shear. Buoyant eyewall updraft cores and transient convective-scale reflectivity cells are predominantly downshear and left-of-shear. Most eyewall downdraft cores that transport significant mass downward are located upshear. Negative buoyancy was most common in left-of-shear downdrafts, with positive buoyancy dominant in upshear downdrafts. Inward-spiraling rainbands located outside the eyewall exhibit upband/downband asymmetries. Upband segments contain more convective reflectivity cells and buoyant updraft cores than the more stratiform downband segments. Equal numbers of downdraft cores are found upband and downband, but the majority exhibit negative buoyancy.

Several buoyant updraft cores encountered in the midlevel eyewall exhibit equivalent potential temperatures (θe) much higher than the θe observed in the low-level eyewall, but equivalent to the θe observed in the low-level eye. Asymmetric low-wavenumber circulations appear responsible for exporting the high-θe eye air into the relatively low-θe eyewall and generating the locally buoyant updraft cores.

Implications of these results upon conceptual models of hurricane structure are discussed. Three mechanisms, whereby an ensemble of asymmetric buoyant convection could contribute to hurricane evolution, are also discussed.

Corresponding author address: Matthew D. Eastin, Department of Math and Computer Science, Central College, 812 University, Pella, IA 50219. Email: eastinm@central.edu

Save