• Anthes, R. A., 1978: The height of the planetary boundary layer and the production of circulation in a sea breeze model. J. Atmos. Sci., 35 , 12311239.

    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., R. M. Wakimoto, and T. M. Weckwerth, 1995: Observations of the sea-breeze front during CaPE. Part II: Dual-Doppler and aircraft analysis. Mon. Wea. Rev., 123 , 944969.

    • Search Google Scholar
    • Export Citation
  • Byers, H. R., and H. R. Rodebush, 1948: Causes of thunderstorms of the Florida peninsula. J. Atmos. Sci., 5 , 275280.

  • Clark, T. E., T. Hauf, and J. P. Kuettner, 1986: Convectively forced internal gravity waves: Results from two-dimensional experiments. Quart. J. Roy. Meteor. Soc., 112 , 899926.

    • Search Google Scholar
    • Export Citation
  • Dailey, P. S., and R. G. Fovell, 1999: Numerical simulation of the interaction between the sea-breeze front and horizontal convective rolls. Part I: Offshore ambient flow. Mon. Wea. Rev., 127 , 858878.

    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., and R. B. Wilhelmson, 1985: Three-dimensional numerical modeling of convection produced by interacting thunderstorm outflows. Part I: Control simulation and low-level moisture variations. J. Atmos. Sci., 42 , 23812403.

    • Search Google Scholar
    • Export Citation
  • Fankhauser, J. C., N. A. Crook, J. Tuttle, L. J. Miller, and C. G. Wade, 1995: Initiation of deep convection along boundary layer convergence lines in a semitropical environment. Mon. Wea. Rev., 123 , 291314.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., 2002: Upstream influence of numerically simulated squall-line storms. Quart. J. Roy. Meteor. Soc., 128 , 893912.

  • Fovell, R. G., and P. S. Dailey, 1995: The temporal behavior of numerically simulated multicell-type storms. Part I: Modes of behavior. J. Atmos. Sci., 52 , 20732095.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., and P-H. Tan, 1998: The temporal behavior of numerically simulated multicell-type storms. Part II: The convective cell life cycle and cell regeneration. Mon. Wea. Rev., 126 , 551577.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., and P. S. Dailey, 2001: Numerical simulation of the interaction between the sea-breeze front and horizontal convective rolls. Part II: Alongshore ambient flow. Mon. Wea. Rev., 129 , 20572072.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., D. Durran, and J. R. Holton, 1992: Numerical simulations of convectively generated stratospheric gravity waves. J. Atmos. Sci., 49 , 14271442.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1992: An Introduction to Dynamic Meteorology. 3d ed. Academic Press, 511 pp.

  • Kingsmill, D. E., 1995: Convection initiation associated with a sea-breeze front, a gust front, and their collision. Mon. Wea. Rev., 123 , 29132933.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35 , 10701096.

    • Search Google Scholar
    • Export Citation
  • Laird, N. F., D. A. R. Kristovich, R. M. Rauber, H. T. Ochs, and L. J. Miller, 1995: The Cape Canaveral sea and river breezes: Kinematic structure and convective initiation. Mon. Wea. Rev., 123 , 29422956.

    • Search Google Scholar
    • Export Citation
  • Leopold, L. B., 1949: The interaction of trade wind and sea breeze, Hawaii. J. Atmos. Sci., 6 , 312320.

  • Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci., 50 , 20262037.

  • Mason, P. J., and R. I. Sykes, 1982: A two-dimensional numerical study of horizontal roll vortices in an inversion capped planetary boundary layer. Quart. J. Roy. Meteor. Soc., 108 , 801823.

    • Search Google Scholar
    • Export Citation
  • Nicholls, M. E., R. A. Pielke, and W. R. Cotton, 1991a: A two-dimensional numerical investigation of the interaction between sea breezes and deep convection over the Florida peninsula. Mon. Wea. Rev., 119 , 298323.

    • Search Google Scholar
    • Export Citation
  • Nicholls, M. E., R. A. Pielke, and W. R. Cotton, 1991b: Thermally forced gravity waves in an atmosphere at rest. J. Atmos. Sci., 48 , 18691884.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., 1974: A three-dimensional numerical model of the sea breezes over south Florida. Mon. Wea. Rev., 102 , 115139.

  • Purdom, J. F. W., 1982: Subjective interpretation of geostationary satellite data for nowcasting. Nowcasting, K. Browning, Ed., Academic Press, 149–156.

    • Search Google Scholar
    • Export Citation
  • Rao, P. A., H. E. Fuelberg, and K. K. Droegmeier, 1999: High-resolution modeling of the Cape Canaveral area land–water circulations and associated features. Mon. Wea. Rev., 127 , 18081821.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., 1983: On the linear theory of the land and sea breeze. J. Atmos. Sci., 40 , 19992009.

  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45 , 463485.

  • Shige, S., and T. Satomura, 2000: The gravity wave response in the troposphere around deep convection. J. Meteor. Soc. Japan, 78 , 789801.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., N. E. Westcott, R. J. Clerman, and R. A. Pielke, 1980: On cumulus mergers. Arch. Meteor. Geophys. Bioklimatol. Ser. A., 29 , 140.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., and J. Simpson, 1984: Cloud interactions and merging: Numerical simulations. J. Atmos. Sci., 41 , 29012917.

  • Wakimoto, R. M., and J. K. Lew, 1993: Observations of a Florida waterspout during CaPE. Wea. Forecasting, 8 , 412423.

  • Wakimoto, R. M., and N. T. Atkins, 1994: Observations of the sea-breeze front during CaPE. Part I: Single-Doppler, satellite and cloud photogrammetry analysis. Mon. Wea. Rev., 122 , 10921113.

    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., 1974: Sea breeze theory and applications. J. Atmos. Sci., 31 , 20122026.

  • Wilson, J. W., and W. E. Schreiber, 1986: Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev., 114 , 25162536.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., G. B. Foote, N. A. Crook, J. C. Fankhauser, C. G. Wade, J. D. Tuttle, C. K. Mueller, and S. K. Krueger, 1992: The role of boundary-layer convergence zones and horizontal rolls in the initiation of thunderstorms: A case study. Mon. Wea. Rev., 120 , 17851815.

    • Search Google Scholar
    • Export Citation
  • Zhong, S., J. M. Leone Jr., and E. S. Takle, 1991: Interaction of the sea breeze with a river breeze in an area of complex coastal heating. Bound.-Layer Meteor., 56 , 101139.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 14 14 14
PDF Downloads 2 2 2

Convective Initiation ahead of the Sea-Breeze Front

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
Restricted access

Abstract

In earlier work, a three-dimensional cloud model was used to simulate the interaction between the sea-breeze front (SBF) and front-parallel horizontal convective rolls (HCRs), resulting in the SBF systematically encountering roll updrafts and downdrafts as it progressed inland. Interestingly, deep convection was spawned above an HCR updraft ahead of the SBF as the front approached, well before the inevitable front–roll merger. Ostensibly, both the sea-breeze and roll circulations were required for deep convection to be present in this case at all because convection was entirely absent when either phenomenon was removed.

Further analysis reveals why both circulations were necessary yet not sufficient for the excitation of deep convection in this case. The sea-breeze circulation (SBC) made its upstream (inland) environment more favorable for convection by bringing about persistent if gentle lifting over an extended region stretching well ahead of the SBF. This persistent ascent established a moist and cool tongue of air, manifested by a visible and/or subvisible cloud feature termed the cloud shelf emanating ahead of the front. Though this lifting moistened and destabilized the environment, the roll’s direct and indirect effects on this moist tongue were also required. The former consisted of a moisture plume lofted by the roll updraft, and the latter consisted of obstacle effect gravity waves generated as the roll drafts penetrated through the top of the boundary layer, into the SBC-associated offshore flow farther aloft. These provided the missing spark, which led to rapid growth of cumulus above the roll updraft, drawing first from air located above the boundary layer.

Once established, deep convection above the roll updraft modulated cloudiness above the approaching SBF, at first suppressing it but subsequently assuring its reestablishment and eventual growth into deep convection, again prior to the front–roll merger. This resulted from the influence of gravity waves excited owing to heating and cooling within the roll cloud.

Corresponding author address: Robert G. Fovell, Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA, 90095-1565. Email: rfovell@ucla.edu

Abstract

In earlier work, a three-dimensional cloud model was used to simulate the interaction between the sea-breeze front (SBF) and front-parallel horizontal convective rolls (HCRs), resulting in the SBF systematically encountering roll updrafts and downdrafts as it progressed inland. Interestingly, deep convection was spawned above an HCR updraft ahead of the SBF as the front approached, well before the inevitable front–roll merger. Ostensibly, both the sea-breeze and roll circulations were required for deep convection to be present in this case at all because convection was entirely absent when either phenomenon was removed.

Further analysis reveals why both circulations were necessary yet not sufficient for the excitation of deep convection in this case. The sea-breeze circulation (SBC) made its upstream (inland) environment more favorable for convection by bringing about persistent if gentle lifting over an extended region stretching well ahead of the SBF. This persistent ascent established a moist and cool tongue of air, manifested by a visible and/or subvisible cloud feature termed the cloud shelf emanating ahead of the front. Though this lifting moistened and destabilized the environment, the roll’s direct and indirect effects on this moist tongue were also required. The former consisted of a moisture plume lofted by the roll updraft, and the latter consisted of obstacle effect gravity waves generated as the roll drafts penetrated through the top of the boundary layer, into the SBC-associated offshore flow farther aloft. These provided the missing spark, which led to rapid growth of cumulus above the roll updraft, drawing first from air located above the boundary layer.

Once established, deep convection above the roll updraft modulated cloudiness above the approaching SBF, at first suppressing it but subsequently assuring its reestablishment and eventual growth into deep convection, again prior to the front–roll merger. This resulted from the influence of gravity waves excited owing to heating and cooling within the roll cloud.

Corresponding author address: Robert G. Fovell, Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA, 90095-1565. Email: rfovell@ucla.edu

Save