• Anders, A. M., , G. H. Roe, , and D. R. Durran, 2004: Precipitation and the form of mountains. Bull. Amer. Meteor. Soc., 85 , 498499.

  • Bright, D. R., , and S. L. Mullen, 2002: The sensitivity of the numerical simulation of the southwest monsoon boundary layer to the choice of PBL turbulence parameterization in MM5. Wea. Forecasting, 17 , 99114.

    • Search Google Scholar
    • Export Citation
  • Bruintjes, R. T., , T. L. Clark, , and W. D. Hall, 1994: Interactions between topographic airflow and cloud/precipitation development during the passage of a winter storm in Arizona. J. Atmos. Sci., 51 , 4867.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., , and D. H. Peterson, 1989: The influence of North Pacific atmospheric circulation on streamflow into the west. Aspects of Climate Variability in the Pacific and Western Americas, Geophys. Monogr., No. 55, Amer. Geophys. Union, 375–396.

    • Search Google Scholar
    • Export Citation
  • Charba, J. P., , D. W. Reynolds, , B. E. McDonald, , and G. M. Carter, 2003: Comparative verification of recent quantitative precipitation forecasts in the National Weather Service: A simple approach for scoring forecast accuracy. Wea. Forecasting, 18 , 161183.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., , and C. F. Mass, 2000: The 5–9 February 1996 flooding event over the Pacific Northwest: Sensitivity studies and evaluation of the MM5 precipitation forecasts. Mon. Wea. Rev., 128 , 593617.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., , and Y. Zeng, 2004: Bulk microphysical sensitivities with the MM5 for orographic precipitation. Part I: The Sierra 1996 event. Mon. Wea. Rev., 132 , 27802801.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., , K. J. Westerick, , and C. F. Mass, 1999: Evaluation of MM5 and Eta-10 precipitation forecasts over the Pacific Northwest during the cool season. Wea. Forecasting, 14 , 137154.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., , C. F. Mass, , and K. J. Westrick, 2000: MM5 precipitation verification over the Pacific Northwest during the 1997–99 cool season. Wea. Forecasting, 15 , 730744.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., , M. Garvert, , J. B. Wolfe, , and C. F. Mass, 2005: The 13–14 December 2001 IMPROVE-2 event. Part III: Simulated microphysical budgets and sensitivity studies. J. Atmos. Sci., 62 , 35353558.

    • Search Google Scholar
    • Export Citation
  • Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87 , 367374.

  • Dettinger, M. D., , D. R. Cayan, , H. F. Diaz, , and D. M. Meko, 1995: Large-scale atmospheric forcing of recent trends toward early snowmelt in California. J. Climate, 8 , 606623.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., , K. Redmond, , and D. Cayan, 2004: Winter orographic precipitation ratios in the Sierra Nevada—Large-scale atmospheric circulations and hydrologic consequences. J. Hydrometeor., 5 , 11021116.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46 , 30773107.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., , U. Damarath, , W. Wergen, , and M. E. Baldwin, 2003: The WGNE assessment of short-term quantitative precipitation forecasts. Bull. Amer. Meteor. Soc., 84 , 481492.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and Coauthors, 1995: Report of the first prospectus development team of the U.S. Weather Research Program to NOAA and the NSF. Bull. Amer. Meteor. Soc., 76 , 11941208.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and Coauthors, 1998: Quantitative precipitation forecasting: Report of the eighth prospectus development team, U.S. Weather Research Program. Bull. Amer. Meteor. Soc., 79 , 285299.

    • Search Google Scholar
    • Export Citation
  • Garvert, M. F., , B. A. Colle, , and C. F. Mass, 2005: The 13–14 December 2001 IMPROVE-2 event. Part I: Synoptic and mesoscale evolution and comparison with a mesoscale model simulation. J. Atmos. Sci., 62 , 34743492.

    • Search Google Scholar
    • Export Citation
  • Gaudet, B., , and W. R. Cotton, 1998: Statistical characteristics of real-time precipitation forecasting model. Wea. Forecasting, 13 , 966982.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., , J. Dudhia, , and D. R. Stauffer, 1994: Description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note TN-398, 128 pp.

  • Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14 , 155167.

  • Heggli, M. F., , and R. M. Rauber, 1988: The characteristics and evolution of supercooled water in wintertime storms over the Sierra Nevada: A summary of microwave radiometric measurements taken during the Sierra Cooperative Pilot Project. J. Appl. Meteor., 27 , 9891015.

    • Search Google Scholar
    • Export Citation
  • Hsie, E-Y., , R. A. Anthes, , and D. Keyser, 1984: Numerical simulation of frontogenesis in a moist atmosphere. J. Atmos. Sci., 41 , 25812594.

    • Search Google Scholar
    • Export Citation
  • James, C. N., , and R. A. Houze Jr., 2005: Modification of precipitation by coastal orography in storms crossing northern California. Mon. Wea. Rev., , in press.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain Eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122 , 927945.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43 , 170181.

  • Kain, J. S., , and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 24, Amer. Meteor. Soc., 165–170.

    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr. , No. 10, Amer. Meteor. Soc., 84 pp.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., , and D. R. Durran, 1983: An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models. Mon. Wea. Rev., 111 , 430444.

    • Search Google Scholar
    • Export Citation
  • Lin, Y-L., , R. D. Farley, , and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22 , 10651092.

    • Search Google Scholar
    • Export Citation
  • Marwitz, J. D., 1983: The kinematics of orographic airflow during Sierra storms. J. Atmos. Sci., 40 , 12181227.

  • Marwitz, J. D., 1987: Deep orographic storms over the Sierra Nevada. Part I: Thermodynamic and kinematic structure. J. Atmos. Sci., 44 , 159173.

    • Search Google Scholar
    • Export Citation
  • McDonald, B. E., 1998: Sensitivity of precipitation forecast skill to the horizontal resolution. Ph.D. dissertation, University of Utah, 135 pp.

  • Medina, S., , B. F. Smull, , R. A. Houze Jr., , and M. Steiner, 2005: Cross-barrier flow during orographic precipitation events: Results from MAP and IMPROVE. J. Atmos. Sci., 62 , 35803598.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., , and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20 , 851875.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., , and W. R. Cotton, 1992: Evaluation of the potential for wintertime quantitative precipitation forecasting over mountainous terrain with an explicit cloud model. Part I: Two-dimensional sensitivity experiments. J. Appl. Meteor., 31 , 2650.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J., , and M. K. Yau, 2001: A mesoscale modeling of the 1996 Saguenay Flood. Mon. Wea. Rev., 129 , 14191440.

  • Montani, A., , A. J. Thorpe, , R. Buizza, , and P. Unden, 1999: Forecast skill of the ECMWF model using targeted observations during FASTEX. Quart. J. Roy. Meteor. Soc., 125 , 32193240.

    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., , and H. Daan, 1985: Forecast evaluation. Probability, Statistics, and Decision Making in the Atmospheric Sciences, A. H. Murphy and R. W. Katz, Eds., Westview Press, 379–437.

    • Search Google Scholar
    • Export Citation
  • Pandey, G. R., , D. R. Cayan, , and K. P. Georgakakos, 1999: Precipitation structure in the Sierra Nevada of California during winter. J. Geophys. Res., 104 , 1201912030.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., 1982: Barrier winds along the Sierra Nevada mountains. J. Appl. Meteor., 21 , 925930.

  • Ralph, F. M., , P. J. Nieman, , and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132 , 17211745.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., 1992: Microphysical structure and evolution of a Sierra Nevada shallow orographic cloud system. J. Appl. Meteor., 31 , 324.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., , R. M. Rasmussen, , and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124 , 10711107.

    • Search Google Scholar
    • Export Citation
  • Reynolds, D. W., , and A. S. Dennis, 1986: A review of the Sierra Cooperative Pilot Project. Bull. Amer. Meteor. Soc., 67 , 513523.

  • Reynolds, D. W., , and A. P. Kuciauskas, 1988: Remote and in situ observations of Sierra Nevada winter mountain clouds: Relationships between mesoscale structure, precipitation and liquid water. J. Appl. Meteor., 27 , 140156.

    • Search Google Scholar
    • Export Citation
  • Rourke, J., 1998: Computational Geometry in C. Cambridge University Press, 376 pp.

  • Schultz, D. M., and Coauthors, 2002: Understanding Utah winter storms: The Intermountain Precipitation Experiment. Bull. Amer. Meteor. Soc., 83 , 189210.

    • Search Google Scholar
    • Export Citation
  • Schultz, P., 1995: An explicit cloud physics parameterization for operational numerical weather prediction. Mon. Wea. Rev., 123 , 33313343.

    • Search Google Scholar
    • Export Citation
  • Schultz, P., , and S. Snook, 1996: Objective verification of mesoscale model precipitation forecasts. Preprints, 15th Conf. on Weather Forecasting and Analysis, Norfolk, VA, Amer. Meteor. Soc., 124–126.

  • Shaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5 , 570575.

  • Smith, R. B., 1979: The influence of mountains on the atmosphere. Advances in Geophysics, Vol. 21, Academic Press, 87–230.

  • Soong, S., , and J. Kim, 1996: Simulation of a heavy wintertime precipitation event in California. Climate Change, 32 , 5577.

  • Stanski, H. R., , L. J. Wilson, , and W. R. Burrows, 1989: Survey of common verification methods in meteorology. Atmospheric Environment Service, Toronto, ON, Canada, Research Rep. 89-5, 114 pp.

  • Stoelinga, M. T., , P. V. Hobbs, , C. F. Mass, , J. D. Locatelli, , N. A. Bond, , B. A. Colle, , R. A. Houze Jr., , and A. Rango, 2003: Improvement of Microphysical Parameterization through Observational Verification Experiment (IMPROVE). Bull. Amer. Meteor. Soc., 84 , 18071826.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., , and J. Simpson, 1993: Goddard Cumulus Ensemble Model. Part I: Model description. Terr. Atmos. Oceanic Sci., 4 , 3572.

  • Thompson, G., , R. Rasmussen, , and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132 , 519542.

    • Search Google Scholar
    • Export Citation
  • Tustison, B., , D. Harris, , and E. Foufoula-Georgiou, 2001: Scale issues in verification of precipitation forecasts. J. Geophys. Res., 106 , 1177511784.

    • Search Google Scholar
    • Export Citation
  • Wilks, D., 1995: Statistical Methods in Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • Yang, D., , B. E. Goodison, , J. R. Metcalfe, , V. S. Golubev, , R. Bates, , T. Pangburn, , and C. L. Hanson, 1998: Accuracy of NWS 8″ standard nonrecording precipitation gauge: Results and application of WMO intercomparison. J. Atmos. Oceanic Technol., 15 , 5468.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 21 21 2
PDF Downloads 1 1 0

Quantitative Precipitation Forecasting of Wintertime Storms in the Sierra Nevada: Sensitivity to the Microphysical Parameterization and Horizontal Resolution

View More View Less
  • 1 Desert Research Institute, Reno, Nevada
© Get Permissions
Restricted access

Abstract

The skill of a mesoscale model in predicting orographic precipitation during high-impact precipitation events in the Sierra Nevada, and the sensitivity of that skill to the choice of the microphysical parameterization and horizontal resolution, are examined. The fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) and four bulk microphysical parameterization schemes examined are the Dudhia ice scheme, and the Schultz, GSFC, and Reisner2 mixed-phase schemes. The verification dataset consists of ground precipitation measurements from a selected number of wintertime heavy precipitation events documented during the Sierra Cooperative Pilot Project in the 1980s. At high horizontal resolutions, the predicted spatial precipitation patterns on the upwind Sierra Nevada slopes were found to have filamentary structure, with precipitation amounts over the transverse upwind ridges exceeding severalfold those over the nearby deep river valleys. The verification results show that all four tested bulk microphysical schemes in MM5 produce overprediction of precipitation on both the windward and lee slopes of the Sierra Nevada. The examined accuracy measures indicate that the Reisner2 scheme displays the best overall performance on both sides of the mountain range. The examined statistical skill scores on the other hand reveal that, regardless of the microphysical scheme used, the skill of the MM5 model in predicting the observed spatial distribution of the Sierra Nevada orographic precipitation is fairly low, that this skill is not improved by increasing the horizontal resolution of the model simulations, and that on average the quantitative precipitation forecasting (QPF) skill is better on the windward than on the lee side. Furthermore, a significance test shows that differences in skill scores obtained with the four microphysical schemes are not statistically significant.

Corresponding author address: Dr. Vanda Grubišić, Division of Atmospheric Sciences, Desert Research Institute, Reno, NV 89512. Email: Vanda.Grubisic@dri.edu

Abstract

The skill of a mesoscale model in predicting orographic precipitation during high-impact precipitation events in the Sierra Nevada, and the sensitivity of that skill to the choice of the microphysical parameterization and horizontal resolution, are examined. The fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) and four bulk microphysical parameterization schemes examined are the Dudhia ice scheme, and the Schultz, GSFC, and Reisner2 mixed-phase schemes. The verification dataset consists of ground precipitation measurements from a selected number of wintertime heavy precipitation events documented during the Sierra Cooperative Pilot Project in the 1980s. At high horizontal resolutions, the predicted spatial precipitation patterns on the upwind Sierra Nevada slopes were found to have filamentary structure, with precipitation amounts over the transverse upwind ridges exceeding severalfold those over the nearby deep river valleys. The verification results show that all four tested bulk microphysical schemes in MM5 produce overprediction of precipitation on both the windward and lee slopes of the Sierra Nevada. The examined accuracy measures indicate that the Reisner2 scheme displays the best overall performance on both sides of the mountain range. The examined statistical skill scores on the other hand reveal that, regardless of the microphysical scheme used, the skill of the MM5 model in predicting the observed spatial distribution of the Sierra Nevada orographic precipitation is fairly low, that this skill is not improved by increasing the horizontal resolution of the model simulations, and that on average the quantitative precipitation forecasting (QPF) skill is better on the windward than on the lee side. Furthermore, a significance test shows that differences in skill scores obtained with the four microphysical schemes are not statistically significant.

Corresponding author address: Dr. Vanda Grubišić, Division of Atmospheric Sciences, Desert Research Institute, Reno, NV 89512. Email: Vanda.Grubisic@dri.edu

Save