• Ahmad, B., 1998: Accuracy and resolution of atmospheric profiles obtained from radio occultation measurements. Scientific Rep. DPD811-1988-1, Center for Radar Astronomy, Stanford, CA, 123 pp.

  • Anthes, R. A., , C. Rocken, , and Y-H. Kuo, 2000: Application of COSMIC to meteorology and climate. Terr. Atmos. Ocean Sci., 11 , 115156.

  • Eyre, J. R., 1994: Assimilation of radio occultation measurements into a numerical weather prediction system. European Centre for Medium-Range Weather Forecasts, Tech. Memo. 199, 34 pp.

  • Gorbunov, M. E., 2002: Canonical transform method for processing radio occultation data in the lower troposphere. Radio Sci., 37 .1076, doi:10.1029/2000RS002592.

    • Search Google Scholar
    • Export Citation
  • Gorbunov, M. E., , and L. Kornblueh, 2003: Principles of variational assimilation of GNSS radio occultation data. Max Planck Institute for Meteorology Rep. 350, 34 pp.

  • Gorbunov, M. E., , S. V. Sokolovskiy, , and L. Bengtsson, 1996: Space refractive tomography of the atmosphere: Modeling of direct and inverse problems. Max Planck Institute for Meteorology Rep. 210, 59 pp.

  • Gurvich, A. S., , and S. V. Sokolovskiy, 1985: Reconstruction of a pressure field by remote refractometry from space. Izv. Atmos. Ocean Phys., 21 , 713.

    • Search Google Scholar
    • Export Citation
  • Healy, S. B., 2001: Radio occultation bending angle and impact parameter errors caused by horizontal refractive index gradients in the troposphere: A simulation study. J. Geophys. Res., 106 , D11,. 1187511889.

    • Search Google Scholar
    • Export Citation
  • Jensen, A. S., , M. S. Lohmann, , H-H. Benzon, , and A. S. Nielsen, 2003: Full spectrum inversion of radio occultation signals. Radio Sci., 38 .1040, doi:10.1029/2002RS002763.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y-H., , S. V. Sokolovskiy, , R. A. Anthes, , and F. Vandenberghe, 2000: Assimilation of GPS radio occultation data for numerical weather prediction. Terr. Atmos. Ocean Sci., 11 , 157186.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y-H., , T-K. Wee, , S. Sokolovskiy, , C. Rocken, , W. Schreiner, , D. Hunt, , and R. A. Anthes, 2004: Inversion and error estimation of GPS radio occultation data. J. Meteor. Soc. Japan, 82 , 1B,. 507531.

    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., , G. A. Hajj, , J. T. Schofield, , R. P. Linfield, , and K. R. Hardy, 1997: Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J. Geophys. Res., 102 , D19,. 2342923465.

    • Search Google Scholar
    • Export Citation
  • Liu, H., , and X. Zou, 2003: Improvements to a GPS radio occultation ray-tracing model and their impacts on assimilation of bending angle. J. Geophys. Res., 108 .4548, doi:10.1029/2002JD003160.

    • Search Google Scholar
    • Export Citation
  • Martin, B. R., 1971: Statistics for Physicists. Academic Press, 209 pp.

  • Michalakes, J., , S. Chen, , J. Dudhia, , J. Klemp, , J. Middlecoff, , and W. Skamarock, 2001: Development of a next generation regional weather research and forecast model: Developments in teracomputing. Proceedings of the Ninth ECMWF Workshop on the Use of High Performance Computing in Meteorology, W. Zwiefthofer and N. Kreitz, Eds., World Scientific, 269–276.

    • Search Google Scholar
    • Export Citation
  • Poli, P., 2004: Effects of horizontal gradients on GPS radio occultation observation operators. II: A fast atmospheric refractivity gradient operator. Quart. J. Roy. Meteor. Soc., , 130, doi: 10.1256/qj.03.229.

    • Search Google Scholar
    • Export Citation
  • Poli, P., , and J. Joiner, 2004: Effects of horizontal gradients on GPS radio occultation observation operators. I: Ray tracing. Quart. J. Roy. Meteor. Soc., 130 .doi:10.1256/qj.03.228.

    • Search Google Scholar
    • Export Citation
  • Rocken, C., and Coauthors, 1997: Analysis and validation of GPS/MET data in the neutral atmosphere. J. Geophys. Res., 102 , D25,. 2984929866.

    • Search Google Scholar
    • Export Citation
  • Rocken, C., , Y-H. Kuo, , W. Schreiner, , D. Hunt, , S. Sokolovskiy, , and C. McCormick, 2000: COSMIC system description. Terr. Atmos. Ocean Sci., 11 , 157186.

    • Search Google Scholar
    • Export Citation
  • Rogers, E., , T. Black, , D. Deaven, , G. DiMego, , Q. Zhao, , M. Baldwin, , N. Junker, , and Y. Lin, 1996: Changes to the operational “early” Eta analysis/forecast system at the National Centers for Environmental Prediction. Wea. Forecasting, 11 , 391413.

    • Search Google Scholar
    • Export Citation
  • Sokolovskiy, S., , Y-H. Kuo, , and W. Wang, 2005: Assessing the accuracy of a linearized observation operator for assimilation of radio occultation data: Case simulations with a high-resolution weather model. Mon. Wea. Rev., 133 , 22002212.

    • Search Google Scholar
    • Export Citation
  • Syndergaard, S., , D. Flittner, , R. Kursinski, , and B. Herman, 2003: Simulating the influence of horizontal gradients on refractivity profiles from radio occultations. Proc. Fourth Oersted Int. Science Team Conf. (OIST-4), Copenhagen, Denmark, Danish Meteorological Institute, 245–250.

    • Search Google Scholar
    • Export Citation
  • Syndergaard, S., , E. R. Kursinski, , B. M. Herman, , E. M. Lane, , and D. E. Flittner, 2005: A refractive index mapping operator for assimilation of occultation data. Mon. Wea. Rev., 133 , 26502668.

    • Search Google Scholar
    • Export Citation
  • Thayer, G. D., 1974: An improved equation for the radio refractive index of air. Radio Sci., 9 , 803807.

  • Wickert, J., and Coauthors, 2001: Atmosphere sounding by GPS radio occultation: First results from CHAMP. Geophys. Res. Lett., 28 , 32633266.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 34 34 6
PDF Downloads 6 6 0

Evaluation of a Linear Phase Observation Operator with CHAMP Radio Occultation Data and High-Resolution Regional Analysis

View More View Less
  • 1 University Corporation for Atmospheric Research, Boulder, Colorado, and A.M. Obukhov Institute of Atmospheric Physics, Moscow, Russia
  • | 2 University Corporation for Atmospheric Research, and National Center for Atmospheric Research, Boulder, Colorado
  • | 3 National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

In this study a nonlocal, linear observation operator for assimilating radio occultation data is evaluated. The operator consists of modeling the excess phase, that is, integrating the refractivity along straight lines tangent to rays, below a certain height. The corresponding observable is the excess phase integrated through the Abel-retrieved refractivity, along the same lines, below the same height. The operator allows very simple implementation (computationally efficient) while accurately accounting for the horizontal refractivity gradients. This is due to significant cancellation of the linearization and discretization errors when modeling the observable. Evaluation of the operator with Challenging Minisatellite Payload (CHAMP) radio occultation data and grid refractivity fields from high-resolution regional analysis over the continental United States showed reduction of the observation error in the troposphere (below 7 km) 1.5–2 times, compared to the error of local refractivity. The operator is useful for the assimilation of radio occultation data by high-resolution weather models in the troposphere.

Corresponding author address: Sergey Sokolovskiy, 3300 Mitchell Lane, #3340, Boulder, CO 80301. Email: sergey@ucar.edu

Abstract

In this study a nonlocal, linear observation operator for assimilating radio occultation data is evaluated. The operator consists of modeling the excess phase, that is, integrating the refractivity along straight lines tangent to rays, below a certain height. The corresponding observable is the excess phase integrated through the Abel-retrieved refractivity, along the same lines, below the same height. The operator allows very simple implementation (computationally efficient) while accurately accounting for the horizontal refractivity gradients. This is due to significant cancellation of the linearization and discretization errors when modeling the observable. Evaluation of the operator with Challenging Minisatellite Payload (CHAMP) radio occultation data and grid refractivity fields from high-resolution regional analysis over the continental United States showed reduction of the observation error in the troposphere (below 7 km) 1.5–2 times, compared to the error of local refractivity. The operator is useful for the assimilation of radio occultation data by high-resolution weather models in the troposphere.

Corresponding author address: Sergey Sokolovskiy, 3300 Mitchell Lane, #3340, Boulder, CO 80301. Email: sergey@ucar.edu

Save