• Adams, D. K., , and A. C. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78 , 21972213.

  • Anderson, B. T., , and J. O. Roads, 2002: Regional simulation of summertime precipitation over the southwestern United States. J. Climate, 15 , 33213342.

    • Search Google Scholar
    • Export Citation
  • Carleton, A. M., , D. A. Carpenter, , and P. J. Wesser, 1990: Mechanisms of interannual variability of the southwest United States summer rainfall maximum. J. Climate, 3 , 9991015.

    • Search Google Scholar
    • Export Citation
  • Castro, C. L., , T. B. McKee, , and R. A. Pielke Sr., 2001: The relationship of the North American monsoon to tropical and North Pacific sea surface temperatures as revealed by observational analyses. J. Climate, 14 , 44494473.

    • Search Google Scholar
    • Export Citation
  • Cavazos, T., , A. C. Comrie, , and D. M. Liverman, 2002: Intraseasonal variability associated with wet monsoons in southwest Arizona. J. Climate, 15 , 24772490.

    • Search Google Scholar
    • Export Citation
  • Chen, F., , and J. Dudhia, 2001: Coupling an advanced land surface hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129 , 569585.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46 , 30773107.

    • Search Google Scholar
    • Export Citation
  • Farrara, J. D., , and J. Yu, 2003: Interannual variations in the southwest U.S. monsoon and sea surface temperature anomalies: A general circulation model study. J. Climate, 16 , 17031720.

    • Search Google Scholar
    • Export Citation
  • Gao, X., , S. Sorooshian, , J. Li, , and J. Xu, 2003: SST data improve modeling of North American monsoon rainfall. Eos, Trans. Amer. Geophys. Union, 84 .P457, P462.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., , and J. M. Wallace, 1997: The diurnal march of convective cloudiness over the Americas. Mon. Wea. Rev., 125 , 31573171.

    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., , W. J. Shuttleworth, , and Z-Y. Yang, 2002: Sensitivity of the modeled North American monsoon regional climate to convective parameterization. Mon. Wea. Rev., 130 , 12821298.

    • Search Google Scholar
    • Export Citation
  • Guichard, F., , D. B. Parsons, , J. Dudhia, , and J. Bresch, 2003: Evaluating mesoscale model predictions of clouds and radiation with SGP ARM data over a seasonal timescale. Mon. Wea. Rev., 131 , 926944.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., , and W. Shi, 2000: Dominant factors responsible for interannual variability of summer monsoon in the southwestern United States. J. Climate, 13 , 759776.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., , and W. Shi, 2001: Intercomparison of the principal modes of interannual and intraseasonal variability of the North American monsoon system. J. Climate, 14 , 403417.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., , Y. Yao, , and X. L. Wang, 1997: Influence of the North American monsoon system on the U.S. summer precipitation regime. J. Climate, 10 , 26002622.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., , Y. Chen, , and A. V. Douglas, 1999: Interannual variability of the North American warm-season precipitation regime. J. Climate, 12 , 653680.

    • Search Google Scholar
    • Export Citation
  • Hong, S-Y., , and H-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124 , 23222339.

    • Search Google Scholar
    • Export Citation
  • Hong, S-Y., , and E. Kalnay, 2000: Role of sea surface temperature and soil moisture feedback in the 1998 Oklahoma–Texas drought. Nature, 408 , 842844.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., , and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47 , 27842802.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kunkel, K. E., 2003: Sea surface temperature forcing the upward trend in U.S. extreme precipitation. J. Geophys. Res., 108 .4020, doi:10.1029/2002/JD002404.

    • Search Google Scholar
    • Export Citation
  • Lau, K-M., , and C-H. Sui, 1997: Mechanisms of short-term sea surface temperature regulation: Observations during TOGA COARE. J. Climate, 10 , 465472.

    • Search Google Scholar
    • Export Citation
  • Li, J., , X. Gao, , R. Maddox, , and S. Sorooshian, 2004: Model study of evolution and diurnal variations of rainfall in the North American monsoon during June and July 2002. Mon. Wea. Rev., 132 , 28952915.

    • Search Google Scholar
    • Export Citation
  • Liang, X., , L. Li, , K. E. Kunkel, , M. Ting, , and J. X. L. Wang, 2004: Regional climate model simulation of U.S. precipitation during 1982–2002. Part I: Annual cycle. J. Climate, 17 , 35103529.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., , T. T. Warner, , M. Xu, , and D. J. Gochis, 2004: Comparison of cumulus parameterization and entrainment using domain-mean wind divergence in a regional model. J. Atmos. Sci., 61 , 12841295.

    • Search Google Scholar
    • Export Citation
  • Markowski, G. R., , and G. R. North, 2003: Climatic influence of sea surface temperature: Evidence of substantial precipitation correlation and predictability. J. Hydrometeor., 4 , 856877.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., , D. Ivanova, , R. Rabin, , T. J. Brown, , and K. Redmond, 2002: Gulf of California sea surface temperatures and the North American monsoon: Mechanistic implications from observation. J. Climate, 15 , 22612281.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 2000: Intraseasonal modulation of summer precipitation over North America. Mon. Wea. Rev., 128 , 14901505.

  • Mo, K. C., , and J. N. Paegle, 2000: Influence of sea surface temperature anomalies on the precipitation regimes over the southwest United States. J. Climate, 13 , 35883598.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., , and H. M. Juang, 2003: Influence of sea surface temperature anomalies in the Gulf of California on North American monsoon rainfall. J. Geophys. Res., 108 .4112, doi:10.1029/2002JD002403.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., , J. N. Paegle, , and R. W. Higgins, 1997: Atmospheric processes associated with summer floods and droughts in the central United States. J. Climate, 10 , 30283046.

    • Search Google Scholar
    • Export Citation
  • Pastor, F., , M. J. Estrela, , D. Penarrocha, , and M. M. Millan, 2001: Torrential rains on the Spanish Mediterranean coast: Modeling the effects of the sea surface temperature. J. Appl. Meteor., 40 , 11801195.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., , N. A. Rayner, , T. M. Smith, , D. C. Stokes, , and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15 , 16091625.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., , X. Gao, , K. Hsu, , R. A. Maddox, , Y. Hong, , H. V. Gupta, , and B. Iman, 2002: Diurnal variability of tropical rainfall retrieved from combined GOES and TRMM satellite information. J. Climate, 15 , 9831001.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., , R. L. Gall, , S. L. Mullen, , and K. W. Howard, 1995: Model climatology of the Mexican monsoon. J. Climate, 8 , 17751794.

    • Search Google Scholar
    • Export Citation
  • Ting, M., , and W. Wang, 1997: Summertime U.S. precipitation variability and its relation to Pacific sea surface temperature. J. Climate, 10 , 18531873.

    • Search Google Scholar
    • Export Citation
  • Wang, W., , and N. L. Seaman, 1997: A comparison study of the convective parameterization schemes in a mesoscale model. Mon. Wea. Rev., 125 , 252278.

    • Search Google Scholar
    • Export Citation
  • Warner, T. T., , B. E. Mapes, , and M. Xu, 2003: Diurnal patterns of rainfall in northwestern South America. Part II: Model simulations. Mon. Wea. Rev., 131 , 813829.

    • Search Google Scholar
    • Export Citation
  • Weller, R. A., , and S. P. Anderson, 1996: Surface meteorology and air–sea fluxes in the western equatorial Pacific warm pool during the TOGA Coupled Ocean–Atmosphere Response Experiment. J. Climate, 9 , 19591990.

    • Search Google Scholar
    • Export Citation
  • Woolnough, S. J., , and J. M. Slingo, 2000: The relationship between convection and sea surface temperature on intraseasonal timescales. J. Climate, 13 , 20862104.

    • Search Google Scholar
    • Export Citation
  • Yang, Z-L., , D. Gochis, , W. Shuttleworth, , and N-Y. Niu, 2003: The impact of sea surface temperature on the North American monsoon: A GCM study. Geophys. Res. Lett., 30 .1033, doi:10.1029/2002GL015628.

    • Search Google Scholar
    • Export Citation
  • Yin, B., , and B. A. Albrecht, 2000: Spatial variability of atmospheric boundary layer structure over the eastern equatorial Pacific. J. Climate, 13 , 15741592.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 14 14 4
PDF Downloads 3 3 1

Sensitivity of North American Monsoon Rainfall to Multisource Sea Surface Temperatures in MM5

View More View Less
  • 1 Center for Hydrometeorological and Remote Sensing, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California
  • | 2 Department of Atmospheric Science, The University of Arizona, Tucson, Arizona
  • | 3 Center for Hydrometeorological and Remote Sensing, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California
© Get Permissions
Restricted access

Abstract

In this article, four continually processed sea surface temperature (SST) datasets, including the Reynolds SST (RYD), the global final analysis of skin temperature at oceans (FNL), and two Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua SSTs retrieved from thermal infrared imagery (TIR) and midinfrared imagery (MIR), were compared. The results show variations from each other. In comparison with the RYD SST, the FNL data have −0.5° ∼ 0.5°C perturbations, while the TIR and MIR SSTs possess larger deviations of −2° ∼ 1°C, mainly due to algorithm and/or sensor differences in these SST datasets.

A regional model, the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (Penn State–NCAR) Mesoscale Model (MM5), was used to investigate whether model atmospheric predictions, especially those concerning precipitation during the North American monsoon season, are sensitive to these SST variations. A comparison of rainfall, atmospheric height, temperature, and wind fields produced by model results, reanalysis data, and observations indicates that, at monthly scale, the model shows changes in the simulations for three consecutive years; in particular, rainfall amounts, timing, and even patterns vary at some specific regions. Forced by the MODIS Aqua midinfrared SST (MIR), which includes large regions with SST values lower than the conventional Reynolds SST, the MM5 rain field predictions show reduced errors over land and oceans compared to when the model is forced by other SST data. Specifically, rainfall estimates are improved over the offshore of southern Mexico, the Gulf of Mexico, the coastal regions of southern and eastern Mexico, and the southwestern U.S. monsoon active region, but only slightly improved over the monsoon core and the high-elevated Great Plains. Using MIR SST data, one is also capable of improving geopotential height and temperature fields in comparison with the reanalysis data.

Corresponding author address: Jialun Li, CHRS, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697. Email: jialunl@uci.edu

Abstract

In this article, four continually processed sea surface temperature (SST) datasets, including the Reynolds SST (RYD), the global final analysis of skin temperature at oceans (FNL), and two Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua SSTs retrieved from thermal infrared imagery (TIR) and midinfrared imagery (MIR), were compared. The results show variations from each other. In comparison with the RYD SST, the FNL data have −0.5° ∼ 0.5°C perturbations, while the TIR and MIR SSTs possess larger deviations of −2° ∼ 1°C, mainly due to algorithm and/or sensor differences in these SST datasets.

A regional model, the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (Penn State–NCAR) Mesoscale Model (MM5), was used to investigate whether model atmospheric predictions, especially those concerning precipitation during the North American monsoon season, are sensitive to these SST variations. A comparison of rainfall, atmospheric height, temperature, and wind fields produced by model results, reanalysis data, and observations indicates that, at monthly scale, the model shows changes in the simulations for three consecutive years; in particular, rainfall amounts, timing, and even patterns vary at some specific regions. Forced by the MODIS Aqua midinfrared SST (MIR), which includes large regions with SST values lower than the conventional Reynolds SST, the MM5 rain field predictions show reduced errors over land and oceans compared to when the model is forced by other SST data. Specifically, rainfall estimates are improved over the offshore of southern Mexico, the Gulf of Mexico, the coastal regions of southern and eastern Mexico, and the southwestern U.S. monsoon active region, but only slightly improved over the monsoon core and the high-elevated Great Plains. Using MIR SST data, one is also capable of improving geopotential height and temperature fields in comparison with the reanalysis data.

Corresponding author address: Jialun Li, CHRS, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697. Email: jialunl@uci.edu

Save