• Baumgardner, D., , and A. Korolev, 1997: Airspeed corrections for optical array probe sample volumes. J. Atmos. Oceanic Technol., 14 , 12241229.

    • Search Google Scholar
    • Export Citation
  • Berry, E. X., , and R. L. Reinhardt, 1974: An analysis of cloud drop growth by collection. Part IV: A new parameterization. J. Atmos. Sci., 31 , 21272135.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and Coauthors, 2001: The MAP Special Observing Period. Bull. Amer. Meteor. Soc., 82 , 433462.

  • Colle, B. A., 2004: Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: An idealized modeling perspective. J. Atmos. Sci., 61 , 588606.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., , and Y. Zeng, 2004a: Bulk microphysical sensitivities and pathways within the MM5 for orographic precipitation. Part I: The Sierra 1986 event. Mon. Wea. Rev., 132 , 27802801.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., , and Y. Zeng, 2004b: Bulk microphysical sensitivities and pathways within the MM5 for orographic precipitation. Part II: Impact of different bulk schemes, barrier width, and freezing level. Mon. Wea. Rev., 132 , 28022815.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., , C. F. Mass, , and K. J. Westrick, 2000: MM5 precipitation verification over the Pacific Northwest during the 1997–99 cool seasons. Wea. Forecasting, 15 , 730744.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., , B. F. Small, , and M-J. Yang, 2002: Numerical simulations of a landfalling cold front observed during COAST: Rapid evolution and responsible mechanisms. Mon. Wea. Rev., 130 , 19451966.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., , F. Garvert, , J. B. Wolfe, , C. F. Mass, , and C. P. Woods, 2005: The 13–14 December 2001 IMPROVE-2 event. Part III: Simulated microphysical budgets and sensitivity studies. J. Atmos. Sci., 62 , 35353558.

    • Search Google Scholar
    • Export Citation
  • Cox, G. P., 1988: Modeling precipitation in frontal rainbands. Quart. J. Roy. Meteor. Soc., 114 , 115127.

  • Cox, J. A., , W. J. Steenburgh, , D. E. Kingsmill, , J. Shafer, , B. A. Colle, , O. Bousequet, , B. F. Smull, , and H. Cai, 2005: The kinematic structure of a Wasatch Mountain winter storm during IPEX IOP3. Mon. Wea. Rev., 133 , 521542.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., , and Y. Ogura, 1988: Numerical simulation of a midlatitude squall line in two dimensions. J. Atmos. Sci., 45 , 38463879.

    • Search Google Scholar
    • Export Citation
  • Garvert, M. F., , B. A. Colle, , and C. F. Mass, 2005a: The 13–14 December 2001 IMPROVE-2 event. Part I: Synoptic and mesoscale evolution and comparison with a mesoscale model simulation. J. Atmos. Sci., 62 , 34743492.

    • Search Google Scholar
    • Export Citation
  • Garvert, M. F., , C. P. Woods, , B. A. Colle, , C. F. Mass, , P. V. Hobbs, , M. P. Stoelinga, , and J. B. Wolfe, 2005b: The 13–14 December 2001 IMPROVE-2 Event. Part II: Comparisons of MM5 model simulations of clouds and precipitation with observations. J. Atmos. Sci., 62 , 35203534.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., , J. M. Straka, , and E. N. Rasmussen, 2004: Precipitation and evolution sensitivity in simulated deep convective storms: Comparisons between liquid-only and simple ice and liquid phase microphysics. Mon. Wea. Rev., 132 , 18971916.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., , J. Dudhia, , and D. R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 138 pp. [Available from National Center for Atmospheric Research, P. O. Box 3000, Boulder, CO 80307.].

  • Hart, K. A., , W. J. Steenburgh, , D. J. Onton, , and A. J. Siffert, 2004: An evaluation of mesoscale-model-based model output statistics (MOS) during the 2002 Olympic and Paralympic Winter Games. Wea. Forecasting, 19 , 200218.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , and J. L. Parrish, 1978: A computational technique for increasing the effective sampling volume of the PMS two-dimensional particle size spectrometer. J. Appl. Meteor., 17 , 15661572.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , and D. Baumgardner, 1985: Summary of a workshop on processing 2-D probedata. Bull. Amer. Meteor. Soc., 66 , 437440.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , S. Lewis, , A. Bansemer, , J. Iaquinta, , L. M. Miloshevich, , M. Kajikawa, , C. Twohy, , and M. R. Poellot, 2002: A general approach for deriving the properties of cirrus and stratiform ice cloud particles. J. Atmos. Sci., 59 , 329.

    • Search Google Scholar
    • Export Citation
  • Hong, S-Y., , and H-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124 , 23222339.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., , and S. Medina, 2005: Turbulence as a mechanism for orographic precipitation enhancement. J. Atmos. Sci., 62 , 35993623.

    • Search Google Scholar
    • Export Citation
  • Jiang, Q., 2003: Moist dynamics and orographic precipitation. Tellus, 55A , 301316.

  • Jorgensen, D. P., 1984: Mesoscale and convective-scale characteristics of mature hurricanes. Part I: General observations by research aircraft. J. Atmos. Sci., 41 , 12681286.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., , and M. A. LeMone, 1989: Vertically velocity characteristics of oceanic convection. J. Atmos. Sci., 46 , 621640.

  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

  • King, W. D., , D. A. Parkin, , and R. J. Handsworth, 1978: A hot-wire liquid water device having fully calculable response characteristics. J. Appl. Meteor., 17 , 18091813.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., , and D. R. Durran, 1983: An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models. Mon. Wea. Rev., 111 , 430444.

    • Search Google Scholar
    • Export Citation
  • Knollenberg, R. G., 1970: The optical array: An alternative to scattering or extinction for airborne particle size determination. J. Appl. Meteor., 9 , 86103.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., , and J. W. Strapp, 2002: Accuracy of measurements of cloud ice water content by the Nevzorov probe ice. Proc. 40th Aerospace Sciences Meeting & Exhibit, AIAA 2002-0679, Reno, NV, American Institute of Aeronautics and Astronautics. [Available online at http://www.airs-icing.org/publications/publications.htm.].

  • Korolev, A. V., , J. W. Strapp, , and G. A. Isaac, 1998a: Evaluation of the accuracy of PMS optical array probes. J. Atmos. Oceanic Technol., 15 , 708720.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., , J. W. Strapp, , G. A. Isaac, , and A. N. Nevzorov, 1998b: The Nevzorov airborne hotwire LWC-TWC probe: Principle of operation and performance characteristics. J. Atmos. Oceanic Technol., 15 , 14951510.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., , G. A. Isaac, , and J. Hallett, 2000: Ice particle habits in stratiform clouds. Quart. J. Roy. Meteor. Soc., 126 , 28732902.

    • Search Google Scholar
    • Export Citation
  • Lin, Y. L., , R. Farley, , and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22 , 10651092.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., , and P. V. Hobbs, 1974: Fallspeeds and masses of solid precipitation particles. J. Geophys. Res., 79 , 21852197.

  • Marwitz, J. D., 1987a: Deep orographic storms over the Sierra Nevada. Part I: Thermodynamic and kinematic structure. J. Atmos. Sci., 44 , 159173.

    • Search Google Scholar
    • Export Citation
  • Marwitz, J. D., 1987b: Deep orographic storms over the Sierra Navada. Part II: The precipitation processes. J. Atmos. Sci., 44 , 174185.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., , D. Ovens, , K. W. Westrick, , and B. A. Colle, 2002: Does increasing horizontal resolution produce better forecasts? The results of two years of real-time numerical weather prediction in the Pacific Northwest. Bull. Amer. Meteor. Soc., 83 , 407430.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., , and R. A. Black, 2004: Observations of particle size and phase in tropical cyclones: Implications for mesoscale modeling of microphysical processes. J. Atmos. Sci., 61 , 422439.

    • Search Google Scholar
    • Export Citation
  • Medina, S., , and R. A. Houze Jr., 2003: Air motions and precipitation growth in Alpine storms. Quart. J. Roy. Meteor. Soc., 129 , 345371.

    • Search Google Scholar
    • Export Citation
  • Medina, S., , B. F. Smull, , R. A. Houze Jr., , and M. Steiner, 2005: Cross-barrier flow during orographic precipitation events: Results from MAP and IMPROVE. J. Atmos. Sci., 62 , 35803598.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., , F. M. Ralph, , A. B. White, , D. E. Kingsmill, , and P. O. G. Persson, 2002: The statistical relationship between upslope flow and rainfall in California’s coastal mountains: Observations during CALJET. Mon. Wea. Rev., 130 , 14681492.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., , and N. A. Bond, 1995: Observations and scale analysis of coastal wind jets. Mon. Wea. Rev., 123 , 29342941.

  • Ralph, F. M., and Coauthors, 1999: The California Land-Falling Jets Experiment (CALJET): Objectives and design of a coastal atmosphere–ocean observing system deployed during a strong El Nino. Preprints, Third Symp. on Integrated Observing Systems, Dallas, TX, Amer. Meteor. Soc., 78–81.

  • Reisner, J., , R. M. Rasmussen, , and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storm using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124 , 10711107.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., , and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in mid-latitude cyclones: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40 , 11851206.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., , A. W. Huggins, , A. Long, , J. B. Snider, , and R. Meitin, 1990: Investigations of a winter mountain storm in Utah. Part II: Mesoscale structure, supercooled liquid water development, and precipitation processes. J. Atmos. Sci., 47 , 13231350.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and Coauthors, 2002: Understanding Utah winter storms: The Intermountain Precipitation Experiment. Bull. Amer. Meteor. Soc., 83 , 189210.

    • Search Google Scholar
    • Export Citation
  • Stoelinga, M., and Coauthors, 2003: Improvement of microphysical parameterizations through observational verification experiments (IMPROVE). Bull. Amer. Meteor. Soc., 84 , 18071826.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., , R. M. Rasmussen, , and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132 , 519542.

    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., , A. J. Schanot, , and W. A. Cooper, 1997: Measurement of condensed water content in liquid and ice clouds using an airborne counterflow virtual impactor. J. Atmos. Oceanic Technol., 14 , 197202.

    • Search Google Scholar
    • Export Citation
  • Woods, C. P., , M. T. Stoelinga, , J. D. Locatelli, , and P. V. Hobbs, 2005: Microphysical processes and synergistic interaction between frontal and orographic forcing of precipitation during the 13 December 2001 IMPROVE-2 event over the Oregon Cascades. J. Atmos. Sci., 62 , 34933519.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., , J. Straka, , E. Rasmussen, , M. Randall, , and A. Zahrai, 1997: Design and deployment of a portable, pencil-beam, pulsed, 3-cm Doppler radar. J. Atmos. Oceanic Technol., 14 , 15021512.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 33 33 5
PDF Downloads 41 41 5

High-Resolution Simulations and Microphysical Validation of an Orographic Precipitation Event over the Wasatch Mountains during IPEX IOP3

View More View Less
  • 1 Institute for Terrestrial and Planetary Atmospheres, State University of New York at Stony Brook, Stony Brook, New York
  • | 2 NOAA/Cooperative Institute for Regional Prediction, and Department of Meteorology, University of Utah, Salt Lake City, Utah
  • | 3 Cooperative Institute for Research in Environmental Studies, University of Colorado, Boulder, Colorado
  • | 4 NOAA/Cooperative Institute for Regional Prediction, and Department of Meteorology, University of Utah, Salt Lake City, Utah
© Get Permissions
Restricted access

Abstract

This paper investigates the kinematic flow and precipitation evolution of a winter storm over and upstream of the Wasatch Mountains [Intermountain Precipitation Experiment third intensive observing period (IPEX IOP3)] using a multiply nested version of the fifth-generation Pennsylvania State University (PSU)––National Center for Atmospheric Research (NCAR) Mesoscale Model (MM5). Validation using in situ aircraft data, radiosondes, ground-based radar, and surface observations showed that the MM5, which featured four domains with 36-, 12-, 4-, and 1.33-km grid spacing, realistically simulated the observed partial blocking of the 8–12 m s−1 ambient southwesterly flow and development of a convergence zone and enhanced lowland precipitation region upwind of the initial Wasatch slope. The MM5 also properly simulated the advance of this convergence zone toward the base of the Wasatch during the passage of a midlevel trough, despite not fully capturing the westerly wind shift accompanying the trough.

Accurate simulation of the observed precipitation over the central Wasatch Mountains (within 25% of observed at all stations) required a horizontal grid spacing of 1.33 km. Despite close agreement with the observed surface precipitation, the Reisner2 bulk microphysical scheme produced too much supercooled cloud water and too little snow aloft. A model microphysical budget revealed that the Reisner2 generated over half of the surface precipitation through riming and accretion, rather than snow deposition and aggregation as implied by the observations. Using an intercept for the snow size distribution that allows for greater snow concentrations aloft improved the snow predictions and reduced the cloud water overprediction.

Sensitivity studies illustrate that the reduced surface drag of the Great Salt Lake (GSL) enhanced the convergence zone and associated lowland precipitation enhancement upstream of the Wasatch Mountains. The presence of mountain ranges south of the Great Salt Lake appears to have weakened the along-barrier flow and windward convergence, resulting in a slight decrease in windward precipitation enhancement. Diabatic cooling from falling precipitation was also important for maintaining the blocked flow.

Corresponding author address: Dr. B. A. Colle, Marine Sciences Research Center, The University at Stony Brook, State University of New York, Stony Brook, NY 11794-5000. Email: bcolle@notes.cc.sunysb.edu

Abstract

This paper investigates the kinematic flow and precipitation evolution of a winter storm over and upstream of the Wasatch Mountains [Intermountain Precipitation Experiment third intensive observing period (IPEX IOP3)] using a multiply nested version of the fifth-generation Pennsylvania State University (PSU)––National Center for Atmospheric Research (NCAR) Mesoscale Model (MM5). Validation using in situ aircraft data, radiosondes, ground-based radar, and surface observations showed that the MM5, which featured four domains with 36-, 12-, 4-, and 1.33-km grid spacing, realistically simulated the observed partial blocking of the 8–12 m s−1 ambient southwesterly flow and development of a convergence zone and enhanced lowland precipitation region upwind of the initial Wasatch slope. The MM5 also properly simulated the advance of this convergence zone toward the base of the Wasatch during the passage of a midlevel trough, despite not fully capturing the westerly wind shift accompanying the trough.

Accurate simulation of the observed precipitation over the central Wasatch Mountains (within 25% of observed at all stations) required a horizontal grid spacing of 1.33 km. Despite close agreement with the observed surface precipitation, the Reisner2 bulk microphysical scheme produced too much supercooled cloud water and too little snow aloft. A model microphysical budget revealed that the Reisner2 generated over half of the surface precipitation through riming and accretion, rather than snow deposition and aggregation as implied by the observations. Using an intercept for the snow size distribution that allows for greater snow concentrations aloft improved the snow predictions and reduced the cloud water overprediction.

Sensitivity studies illustrate that the reduced surface drag of the Great Salt Lake (GSL) enhanced the convergence zone and associated lowland precipitation enhancement upstream of the Wasatch Mountains. The presence of mountain ranges south of the Great Salt Lake appears to have weakened the along-barrier flow and windward convergence, resulting in a slight decrease in windward precipitation enhancement. Diabatic cooling from falling precipitation was also important for maintaining the blocked flow.

Corresponding author address: Dr. B. A. Colle, Marine Sciences Research Center, The University at Stony Brook, State University of New York, Stony Brook, NY 11794-5000. Email: bcolle@notes.cc.sunysb.edu

Save