• Banta, R. M., 1984: Daytime boundary-layer evolution over mountainous terrain. Part 1: Observations of the dry circulations. Mon. Wea. Rev., 112 , 340356.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., and C. B. Schaaf, 1987: Thunderstorm genesis zones in the Colorado Rocky Mountains as determined by traceback of geosynchronous satellite images. Mon. Wea. Rev., 115 , 463476.

    • Search Google Scholar
    • Export Citation
  • Bastin, S., P. Drobinski, A. Dabas, P. Delville, O. Reitebuch, and C. Werner, 2005: Impact of the Rhône and Durance Valleys on sea-breeze circulation in the Marseille area. Atmos. Res., 74 , 308328.

    • Search Google Scholar
    • Export Citation
  • Burger, A., and E. Ekhart, 1937: Über die tägliche Zirkulation im Bereiche der Alpen. Gerl. Beitr. Geophys., 49 , 341367.

  • Browning, K. A., and R. Wexler, 1968: The determination of kinematic properties of a wind field using Doppler radar. J. Appl. Meteor., 7 , 105113.

    • Search Google Scholar
    • Export Citation
  • Carnuth, W., and T. Trickl, 2000: Transport studies with the IFU three-wavelength aerosol lidar during the VOTALP Mesolcina experiment. Atmos. Environ., 34 , 14251434.

    • Search Google Scholar
    • Export Citation
  • Caughey, S. J., and S. G. Palmer, 1979: Some aspects of turbulence structure through the depth of the convective boundary layer. Quart. J. Roy. Meteor. Soc., 105 , 811827.

    • Search Google Scholar
    • Export Citation
  • Cohn, S. A., S. D. Mayor, C. J. Grund, T. M. Weckwerth, and C. Senff, 1998: The Lidars in Flat Terrain (LIFT) Experiment. Bull. Amer. Meteor. Soc., 79 , 13291343.

    • Search Google Scholar
    • Export Citation
  • Corsmeier, U., C. Kottmeier, P. Winkler, M. Lugauer, O. Reitebuch, and P. Drobinski, 2003: Flow modification and mesoscale transport caused by Alpine Pumping: A VERTIKATOR case study. Proc. Int. Conf. on Alpine Meteorology, Brig, Switzerland, 138–140.

  • Cotton, W. R., R. L. George, P. J. Wetzel, and R. L. McAnelly, 1983: A long-lived mesoscale convective complex. Part I: The mountain-generated component. Mon. Wea. Rev., 111 , 18931918.

    • Search Google Scholar
    • Export Citation
  • Couvreux, F., F. Guichard, J-L. Redelsperger, C. Flamant, V. Masson, C. Kiemle, and J-P. Lafore, 2005: Water vapor variability within a convective boundary layer assessed by large eddy simulations and IHOP observations. Quart. J. Roy. Meteor. Soc., , in press.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., and G. E. Willis, 1985: Further results from a laboratory model of the convective planetary boundary layer. Bound.-Layer Meteor., 32 , 205236.

    • Search Google Scholar
    • Export Citation
  • Doms, G., and U. Schättler, 1999: The nonhydrostatic limited-area model LM (Lokal-Modell) of DWD. Part I: Scientific documentation. Research Department, German Weather Service, Offenbach, Germany, 160 pp.

  • Egger, J., 1987: Valley winds and the diurnal circulation over plateaus. Mon. Wea. Rev., 115 , 21772186.

  • Egger, J., S. Bajrachaya, U. Egger, R. Heinrich, J. Reuder, P. Shayka, H. Wendt, and V. Wirth, 2000: Diurnal winds in the Himalayan Kali Gandaki valley. Part I: Observations. Mon. Wea. Rev., 128 , 11061122.

    • Search Google Scholar
    • Export Citation
  • Gayno, G. A., 1994: Development of a higher-order, fog-producing boundary layer model suitable for use in numerical weather prediction. M.S. thesis, The Pennsylvania State University, 104 pp.

  • Giez, A., G. Ehret, R. Schwiesow, K. J. Davis, and D. H. Lenschow, 1999: Water vapor flux measurements from ground-based vertically pointed water vapor differential absorption and Doppler lidars. J. Atmos. Oceanic Technol., 16 , 237250.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1995: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note TN-398+STR, 122 pp.

  • Hong, S-H., and H-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124 , 23222339.

    • Search Google Scholar
    • Export Citation
  • Lugauer, M., and P. Winkler, cited. 2002: Untersuchungen zur thermischen Zirkulation zwischen Alpen und bayrischem Voralpengebiet. FE-Bericht of the German Weather Service (DWD). [Available online at http://www.dwd.de/de/FundE/Veroeffentlichung/Ergebnisse/Ergebnisse.htm.].

  • Lugauer, M., and Coauthors, 2003: An overview of the VERTIKATOR project and results of Alpine Pumping. Proc. Int. Conf. on Alpine Meteorology, Brig, Switzerland, 129–132.

  • Majewski, D., and Coauthors, 2002: The operational global icosahedral–hexagonal gridpoint model GME: Description and high-resolution tests. Mon. Wea. Rev., 130 , 319338.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, and M. J. Iacono, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 , 1666316682.

    • Search Google Scholar
    • Export Citation
  • Nyeki, S., and Coauthors, 2002: Airborne lidar and in-situ aerosol observations of an elevated layer, leeward of the European Alps and Apennines. Geophys. Res. Lett., 29 .1852, doi:10.1029/2002GL014897.

    • Search Google Scholar
    • Export Citation
  • Rahm, S., R. Simmet, and M. Wirth, 2003: Airborne two micron coherent lidar wind profiles. Proc. 12th Coherent Laser Radar Conf., Bar Harbor, ME, 94–97.

  • Raymond, D., and M. Wilkening, 1980: Mountain-induced convection under fair weather conditions. J. Atmos. Sci., 37 , 26932706.

  • Reisner, J., R. J. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124B , 10711107.

    • Search Google Scholar
    • Export Citation
  • Reitebuch, O., C. Werner, I. Leike, P. Deville, P. Flamant, A. Cress, and D. Engelbart, 2001: Experimental validation of wind profiling performed by the airborne 10-μm heterodyne Doppler lidar WIND. J. Atmos. Oceanic Technol., 18 , 13311344.

    • Search Google Scholar
    • Export Citation
  • Reitebuch, O., H. Volkert, C. Werner, A. Dabas, P. Delville, P. Drobinski, P. H. Flamant, and E. Richard, 2003: Determination of air flow across the Alpine ridge by a combination of airborne Doppler lidar, routine radio-sounding, and numerical simulation. Quart. J. Roy. Meteor. Soc., 129 , 715728.

    • Search Google Scholar
    • Export Citation
  • Reitebuch, O., A. Dabas, P. Delville, P. Drobinski, L. Gantner, S. Rahm, and M. Weissmann, 2004: The Alpine mountain-plain circulation “Alpine Pumping”: Airborne Doppler lidar observations at 2 μm and 10.6 μm and MM5 simulations. Proc. 22d Int. Laser Radar Conf. (ILRC), Matera City, Italy, ESA SP-561, 747–750.

  • Reiter, E. R., and M. Tang, 1984: Plateau effects on diurnal circulation patterns. Mon. Wea. Rev., 112 , 638651.

  • Schaaf, C. B., J. Wurman, and R. M. Banta, 1988: Thunderstorm-producing terrain features. Bull. Amer. Meteor. Soc., 69 , 272277.

  • Seibert, P., H. Kromp-Kolb, A. Kasper, M. Kalina, H. Puxbaum, D. T. Jost, M. Schwikowski, and U. Baltensperger, 1998: Transport of polluted boundary layer air from the Po Valley to high-Alpine sites. Atmos. Environ., 32 , 40754085.

    • Search Google Scholar
    • Export Citation
  • Smalikho, I., 2003: Techniques of wind vector estimation from data measured with a scanning coherent Doppler lidar. J. Atmos. Oceanic Technol., 20 , 276291.

    • Search Google Scholar
    • Export Citation
  • Steinacker, R., 1984: Area–height distribution of a valley and its relation to the valley wind. Beitr. Phys. Atmos., 57 , 6471.

  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117 , 17791800.

    • Search Google Scholar
    • Export Citation
  • Vergeiner, I., and E. Dreiseitl, 1987: Valley winds and slope winds—Observations and elementary thoughts. Meteor. Atmos. Phys., 36 , 264286.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., and X. Bian, 1998: Use of radar profiler data to investigate large-scale thermally driven flows into the Rocky Mountains. Proc. Fourth Int. Symp. on Tropospheric Profiling: Needs and Technologies, Snowmass, CO, Radian International Electronic Systems, 329–331.

  • Willis, G. E., and J. W. Deardorff, 1974: A laboratory model of the unstable planetary boundary layer. J. Atmos. Sci., 31 , 12971307.

  • Wotawa, G., H. Kröger, and A. Stohl, 2000: Transport of ozone towards the Alps—Results from trajectory analyses and photochemical model studies. Atmos. Environ., 34 , 13671377.

    • Search Google Scholar
    • Export Citation
  • Young, G. S., 1988: Turbulence structure of the convective boundary layer. Part II: Phoenix 78 aircraft observations of thermals and their environment. J. Atmos. Sci., 45 , 727735.

    • Search Google Scholar
    • Export Citation
  • Zhang, D-L., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21 , 15941609.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 241 134 13
PDF Downloads 151 90 6

The Alpine Mountain–Plain Circulation: Airborne Doppler Lidar Measurements and Numerical Simulations

View More View Less
  • 1 Institute of Atmospheric Physics, DLR Oberpfaffenhofen, Wessling, Germany
  • | 2 Institute for Meteorology and Climate Research, Forschungszentrum Karlsruhe, Karlsruhe, Germany
  • | 3 Meteorological Institute, University of Munich, Munich, Germany
  • | 4 Department of Meteorology and Geophysics, University of Innsbruck, Innsbruck, Austria
  • | 5 Institute of Atmospheric Physics, DLR Oberpfaffenhofen, Wessling, Germany
Restricted access

Abstract

On summer days radiative heating of the Alps produces rising air above the mountains and a resulting inflow of air from the foreland. This leads to a horizontal transport of air from the foreland to the Alps, and a vertical transport from the boundary layer into the free troposphere above the mountains. The structure and the transports of this mountain–plain circulation in southern Germany (“Alpine pumping”) were investigated using an airborne 2-μm scanning Doppler lidar, a wind-temperature radar, dropsondes, rawinsondes, and numerical models. The measurements were part of the Vertical Transport and Orography (VERTIKATOR) campaign in summer 2002. Comparisons of dropsonde and lidar data proved that the lidar is capable of measuring the wind direction and wind speed of this weak flow toward the Alps (1–4 m s−1). The flow was up to 1500 m deep, and it extended ∼80 km into the Alpine foreland. Lidar data are volume measurements (horizontal resolution ∼5 km, vertical resolution 100 m). Therefore, they are ideal for the investigation of the flow structure and the comparison to numerical models. Even the vertical velocities measured by the lidar agreed with the mass budget calculations in terms of both sign and magnitude. The numerical simulations with the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) (mesh size 2 and 6 km) and the Local Model (LM) of the German Weather Service (mesh size 2.8 and 7 km) reproduced the general flow structure and the mass fluxes toward the Alps within 86%–144% of the observations.

Corresponding author address: Martin Weissmann, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institute of Atmospheric Physics, D-82230 Wessling, Germany. Email: martin.weissmann@dlr.de

Abstract

On summer days radiative heating of the Alps produces rising air above the mountains and a resulting inflow of air from the foreland. This leads to a horizontal transport of air from the foreland to the Alps, and a vertical transport from the boundary layer into the free troposphere above the mountains. The structure and the transports of this mountain–plain circulation in southern Germany (“Alpine pumping”) were investigated using an airborne 2-μm scanning Doppler lidar, a wind-temperature radar, dropsondes, rawinsondes, and numerical models. The measurements were part of the Vertical Transport and Orography (VERTIKATOR) campaign in summer 2002. Comparisons of dropsonde and lidar data proved that the lidar is capable of measuring the wind direction and wind speed of this weak flow toward the Alps (1–4 m s−1). The flow was up to 1500 m deep, and it extended ∼80 km into the Alpine foreland. Lidar data are volume measurements (horizontal resolution ∼5 km, vertical resolution 100 m). Therefore, they are ideal for the investigation of the flow structure and the comparison to numerical models. Even the vertical velocities measured by the lidar agreed with the mass budget calculations in terms of both sign and magnitude. The numerical simulations with the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) (mesh size 2 and 6 km) and the Local Model (LM) of the German Weather Service (mesh size 2.8 and 7 km) reproduced the general flow structure and the mass fluxes toward the Alps within 86%–144% of the observations.

Corresponding author address: Martin Weissmann, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institute of Atmospheric Physics, D-82230 Wessling, Germany. Email: martin.weissmann@dlr.de

Save