• Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129 , 28842903.

  • Anderson, J. L., 2003: A local least squares framework for ensemble filtering. Mon. Wea. Rev., 131 , 634642.

  • Buizza, R., M. Miller, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125 , 28872908.

    • Search Google Scholar
    • Export Citation
  • Burgers, G., P. J. van Leeuwen, and G. Evensen, 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126 , 17191724.

  • Cohn, S. E., and D. P. Dee, 1988: Observability of discretized partial differential equations. SIAM J. Numer. Anal., 25 , 585617.

  • Courtier, P., J-N. Thépaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120 , 13671387.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., 1995: On-line estimation of error covariance parameters for atmospheric data assimilation. Mon. Wea. Rev., 123 , 11281145.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and A. M. da Silva, 1998: Data assimilation in the presence of forecast bias. Quart. J. Roy. Meteor. Soc., 124 , 269295.

  • Dee, D. P., and A. M. da Silva, 1999: Maximum-likelihood estimation of forecast parameters for atmospheric data assimilation. Part I: Methodology. Mon. Wea. Rev., 127 , 18221834.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and R. Todling, 2000: Data assimilation in the presence of forecast bias: The GEOS moisture analysis. Mon. Wea. Rev., 128 , 32683282.

    • Search Google Scholar
    • Export Citation
  • Etherton, B. J., and C. H. Bishop, 2004: Resilience of hybrid ensemble/3DVAR analysis schemes to model error and ensemble covariance error. Mon. Wea. Rev., 132 , 10651080.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 , 1014310162.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53 , 343367.

  • Evensen, G., and P. J. van Leeuwen, 1996: Assimilation of Geosat altimeter data for the Agulhas current using the ensemble Kalman filter with a quasigeostrophic model. Mon. Wea. Rev., 124 , 8596.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125 , 723757.

    • Search Google Scholar
    • Export Citation
  • Gelb, A., 1974: Applied Optimal Estimation. MIT Press, 374 pp.

  • Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter/3d-variational analysis scheme. Mon. Wea. Rev., 128 , 29052919.

  • Hamill, T. M., and C. Snyder, 2002: Using improved background error covariances from an ensemble Kalman filter for adaptive observations. Mon. Wea. Rev., 130 , 15521572.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129 , 27762790.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126 , 796811.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129 , 123137.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., H. L. Mitchell, G. Pellerin, M. Buehner, M. Charron, L. Spacek, and B. Hansen, 2005: Atmospheric data assimilation with an ensemble Kalman filter: Results with real observations. Mon. Wea. Rev., 133 , 604620.

    • Search Google Scholar
    • Export Citation
  • Lawson, W. G., and J. A. Hansen, 2004: Implications of stochastic and deterministic filters as ensemble-based data assimilation methods in varying regimes of error growth. Mon. Wea. Rev., 132 , 19661981.

    • Search Google Scholar
    • Export Citation
  • Le Dimet, F-X., and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus, 38A , 97110.

    • Search Google Scholar
    • Export Citation
  • Legras, B., and R. Vautard, 1996: A guide to Lyapunov vectors. Proc. ECMWF Seminar on Predictability, Vol. 1, Reading, United Kimgdom, ECMWF, 143–156. [Available from ECMWF, Shinfield Park, Reading, Berkshire RG2 9AX, United Kingdom.].

  • Leith, C. E., and R. H. Kraichnan, 1972: Predictability of turbulent flows. J. Atmos. Sci., 29 , 10411058.

  • Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP—A comparison with 4D-Var. Quart. J. Roy. Meteor. Soc., 129 , 31833203.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21 , 289307.

  • Maybeck, P. S., 1979: Stochastic Models, Estimation, and Control. Vol. 1, Academic Press, 423 pp.

  • Mitchell, H. L., and R. Daley, 1997: Discretization error and signal/error correlation in atmospheric data assimilation. Part I: All scales resolved. Tellus, 49A , 3253.

    • Search Google Scholar
    • Export Citation
  • Mitchell, H. L., and P. L. Houtekamer, 2000: An adaptive ensemble Kalman filter. Mon. Wea. Rev., 128 , 416433.

  • Mitchell, H. L., P. L. Houtekamer, and G. Pellerin, 2002: Ensemble size, balance, and model-error representation in an ensemble Kalman filter. Mon. Wea. Rev., 130 , 27912808.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 2001: A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parameterization in weather and climate prediction models. Quart. J. Roy. Meteor. Soc., 127 , 279304.

    • Search Google Scholar
    • Export Citation
  • Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical interpolation analysis system. Mon. Wea. Rev., 120 , 17471763.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., J-N. Thépaut, and P. Courtier, 1998: Extended assimilation and forecast experiments with a four-dimensional variational assimilation system. Quart. J. Roy. Meteor. Soc., 124 , 18611887.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., H. Järvinen, E. Klinker, J-F. Mahfouf, and A. Simmons, 2000: The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Quart. J. Roy. Meteor. Soc., 126 , 11431170.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., and M. Suarez, 1989: Dynamical predictability in a simple general circulation model: Average error growth. J. Atmos. Sci., 46 , 353370.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and A. Hollingsworth, 2002: Some aspects of the improvement in skill of numerical weather prediction. Quart. J. Roy. Meteor. Soc., 128 , 647677.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., and T. M. Hamill, 2003: Leading Lyapunov vectors of a turbulent baroclinic jet in a quasigeostrophic model. J. Atmos. Sci., 60 , 683688.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131 , 16631677.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker, 2003: Ensemble square root filters. Mon. Wea. Rev., 131 , 14851490.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125 , 32973319.

  • Tribbia, J. J., and D. P. Baumhefner, 2004: Scale interactions and atmospheric predictability: An updated perspective. Mon. Wea. Rev., 132 , 703713.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130 , 19131924.

  • Whitaker, J. S., G. P. Compo, X. Wei, and T. M. Hamill, 2004: Reanalysis without radiosondes using ensemble data assimilation. Mon. Wea. Rev., 132 , 11901200.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132 , 12381253.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., and J. L. Anderson, 2003: Impact of spatially and temporally varying estimates of error covariance on assimilation in a simple atmospheric model. Tellus, 55A , 126147.

    • Search Google Scholar
    • Export Citation
  • Zou, X., A. Barcilon, I. M. Navon, J. Whitaker, and D. G. Cacuci, 1993: An adjoint sensitivity study of blocking in a two-layer isentropic model. Mon. Wea. Rev., 121 , 28332857.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 282 129 6
PDF Downloads 187 86 3

Accounting for the Error due to Unresolved Scales in Ensemble Data Assimilation: A Comparison of Different Approaches

View More View Less
  • 1 University of Colorado, and NOAA–CIRES Climate Diagnostics Center, Boulder, Colorado
  • | 2 NOAA–CIRES Climate Diagnostics Center, Boulder, Colorado
Restricted access

Abstract

Insufficient model resolution is one source of model error in numerical weather predictions. Methods for parameterizing this error in ensemble data assimilations are explored here. Experiments were conducted with a two-layer primitive equation model, where the assumed true state was a T127 forecast simulation. Ensemble data assimilations were performed with the same model at T31 resolution, assimilating imperfect observations drawn from the T127 forecast. By design, the magnitude of errors due to model truncation was much larger than the error growth due to initial condition uncertainty, making this a stringent test of the ability of an ensemble-based data assimilation to deal with model error. Two general methods, “covariance inflation” and “additive error,” were considered for parameterizing the model error at the resolved scales (T31 and larger) due to interaction with the unresolved scales (T32 to T127). Covariance inflation expanded the background forecast members’ deviations about the ensemble mean, while additive error added specially structured noise to each ensemble member forecast before the update step.

The method of parameterizing this model error had a substantial effect on the accuracy of the ensemble data assimilation. Covariance inflation produced ensembles with analysis errors that were no lower than the analysis errors from three-dimensional variational (3D-Var) assimilation, and for the method to avoid filter divergence, the assimilations had to be periodically reseeded. Covariance inflation uniformly expanded the model spread; however, the actual growth of model errors depended on the dynamics, growing proportionally more in the midlatitudes. The inappropriately uniform inflation progressively degradated the capacity of the ensemble to span the actual forecast error.

The most accurate model-error parameterization was an additive model-error parameterization, which reduced the error difference between 3D-Var and a near-perfect assimilation system by ∼40%. In the lowest-error simulations, additive errors were parameterized using samples of model error from a time series of differences between T63 and T31 forecasts. Scaled samples of differences between model forecast states separated by 24 h were also tested as additive error parameterizations, as well as scaled samples of the T31 model state’s anomaly from the T31 model climatology. The latter two methods produced analyses that were progressively less accurate. The decrease in accuracy was likely due to their inappropriately long spatial correlation length scales.

Corresponding author address: Dr. Thomas M. Hamill, NOAA–CIRES CDC, R/CDC 1, 325 Broadway, Boulder, CO 80305-3328. Email: tom.hamill@noaa.gov

Abstract

Insufficient model resolution is one source of model error in numerical weather predictions. Methods for parameterizing this error in ensemble data assimilations are explored here. Experiments were conducted with a two-layer primitive equation model, where the assumed true state was a T127 forecast simulation. Ensemble data assimilations were performed with the same model at T31 resolution, assimilating imperfect observations drawn from the T127 forecast. By design, the magnitude of errors due to model truncation was much larger than the error growth due to initial condition uncertainty, making this a stringent test of the ability of an ensemble-based data assimilation to deal with model error. Two general methods, “covariance inflation” and “additive error,” were considered for parameterizing the model error at the resolved scales (T31 and larger) due to interaction with the unresolved scales (T32 to T127). Covariance inflation expanded the background forecast members’ deviations about the ensemble mean, while additive error added specially structured noise to each ensemble member forecast before the update step.

The method of parameterizing this model error had a substantial effect on the accuracy of the ensemble data assimilation. Covariance inflation produced ensembles with analysis errors that were no lower than the analysis errors from three-dimensional variational (3D-Var) assimilation, and for the method to avoid filter divergence, the assimilations had to be periodically reseeded. Covariance inflation uniformly expanded the model spread; however, the actual growth of model errors depended on the dynamics, growing proportionally more in the midlatitudes. The inappropriately uniform inflation progressively degradated the capacity of the ensemble to span the actual forecast error.

The most accurate model-error parameterization was an additive model-error parameterization, which reduced the error difference between 3D-Var and a near-perfect assimilation system by ∼40%. In the lowest-error simulations, additive errors were parameterized using samples of model error from a time series of differences between T63 and T31 forecasts. Scaled samples of differences between model forecast states separated by 24 h were also tested as additive error parameterizations, as well as scaled samples of the T31 model state’s anomaly from the T31 model climatology. The latter two methods produced analyses that were progressively less accurate. The decrease in accuracy was likely due to their inappropriately long spatial correlation length scales.

Corresponding author address: Dr. Thomas M. Hamill, NOAA–CIRES CDC, R/CDC 1, 325 Broadway, Boulder, CO 80305-3328. Email: tom.hamill@noaa.gov

Save