• Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129 , 28842903.

  • Anderson, J. L., and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127 , 27412758.

    • Search Google Scholar
    • Export Citation
  • Black, T. L., 1994: The new NMC mesoscale Eta model: Description and forecast examples. Wea. Forecasting, 9 , 265278.

  • Bouttier, F., J-F. Mahfouf, and J. Noilhan, 1993a: Sequential assimilation of soil moisture from atmospheric low-level parameters. Part I: Sensitivity and calibration. J. Appl. Meteor., 32 , 13351351.

    • Search Google Scholar
    • Export Citation
  • Bouttier, F., J-F. Mahfouf, and J. Noilhan, 1993b: Sequential assimilation of soil moisture from atmospheric low-level parameters. Part II: Implementation in a mesoscale model. J. Appl. Meteor., 32 , 13521364.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Miller, and T. N. Palmer, 1999: Stochastic representation for model uncertainties in the ECMWF Ensemble Prediction System. Quart. J. Roy. Meteor. Soc., 125 , 28872908.

    • Search Google Scholar
    • Export Citation
  • Burgers, G., P. VanLeeuwen, and G. Evensen, 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126 , 17191724.

  • Crook, N. A., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev., 124 , 17671785.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1996: A multi-layer soil temperature model for MM5. Proc. Sixth Annual PSU/NCAR Mesoscale Model Users’ Workshop, Boulder, CO, NCAR, 49–51.

  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 , 1014310162.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1997: Advanced data assimilation for strongly nonlinear dynamics. Mon. Wea. Rev., 125 , 13421354.

  • Fast, J. D., 1995: Mesoscale modeling and four-dimensional data assimilation in areas of highly complex terrain. J. Appl. Meteor., 34 , 27622782.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter three-dimensional variational analysis scheme. Mon. Wea. Rev., 128 , 18351851.

    • Search Google Scholar
    • Export Citation
  • Hong, S-Y., and H-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124 , 23222339.

    • Search Google Scholar
    • Export Citation
  • Hou, D., E. Kalnay, and K. Drogemeier, 2001: Objective verification of the SAMEX ‘98 ensemble experiments. Mon. Wea. Rev., 129 , 7391.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126 , 796811.

    • Search Google Scholar
    • Export Citation
  • Järvinen, H., E. Andersson, and F. Bouttier, 1999: Variational assimilation of time sequences of surface observations with serially correlated errors. Tellus, 51A , 469488.

    • Search Google Scholar
    • Export Citation
  • Kumar, N., and A. G. Russell, 1996: Comparing prognostic and diagnostic meteorological fields and their impacts on photochemical air quality modeling. Atmos. Environ., 12 , 19892010.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y-H., R. J. Reed, and S. Low-Nam, 1991: Effects of surface energy fluxes during the early development and rapid intensification stages of seven explosive cyclones in the western Atlantic. Mon. Wea. Rev., 119 , 457476.

    • Search Google Scholar
    • Export Citation
  • Leidner, S. M., D. R. Stauffer, and N. L. Seaman, 2001: Improving short-term numerical weather prediction in the California coastal zone by dynamic initialization of the marine boundary layer. Mon. Wea. Rev., 129 , 275293.

    • Search Google Scholar
    • Export Citation
  • Louis, J-F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17 , 187202.

  • Mahfouf, J-F., 1991: Analysis of soil moisture from near-surface parameters: A feasibility study. J. Appl. Meteor., 30 , 15341547.

  • Margulis, S. A., and D. Entekhabi, 2001: Feedback between the land surface energy balance and atmospheric boundary layer diagnosed through a model and its adjoint. J. Hydrometeor., 2 , 599620.

    • Search Google Scholar
    • Export Citation
  • Margulis, S. A., and D. Entekhabi, 2003: Variational assimilation of radiometric surface temperature and reference-level micrometeorology into a model of the atmospheric boundary layer and land surface. Mon. Wea. Rev., 131 , 12721288.

    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., and C. Cohen, 2002: The impact on simulated storm structure and intensity of variations in the mixed layer and moist layer depths. Mon. Wea. Rev., 130 , 17221748.

    • Search Google Scholar
    • Export Citation
  • Miller, R. N., E. F. Carter Jr., and S. T. Blue, 1999: Data assimilation into nonlinear stochastic models. Tellus, 51A , 167194.

  • Mitchell, H. L., and P. L. Houtekamer, 2000: An adaptive ensemble Kalman filter. Mon. Wea. Rev., 128 , 416433.

  • Mitchell, H. L., P. L. Houtekamer, and G. Pellerin, 2002: Ensemble size, balance, and model-error representation in an ensemble Kalman filter. Mon. Wea. Rev., 130 , 27912808.

    • Search Google Scholar
    • Export Citation
  • Morss, R. E., and K. A. Emanuel, 2002: Influence of added observations on analysis and forecast errors: Results from idealized systems. Quart. J. Roy. Meteor. Soc., 128 , 285321.

    • Search Google Scholar
    • Export Citation
  • Oncley, S. P., and J. Dudhia, 1995: Evaluation of surface fluxes from MM5 using observations. Mon. Wea. Rev., 123 , 33443357.

  • Reichle, R. H., D. Entekhabi, and D. B. McLaughlin, 2001a: Downscaling of radio brightness measurements for soil moisture estimation: A four-dimensional variational approach. Water Resour. Res., 37 , 23532364.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., D. B. McLaughlin, and D. Entekhabi, 2001b: Variational data assimilation of microwave radiobrightness observations for land surface hydrologic applications. IEEE Trans. Geosci. Remote Sens., 39 , 17081718.

    • Search Google Scholar
    • Export Citation
  • Rhodin, A., F. Kucharski, U. Callies, D. P. Eppel, and W. Wergen, 1999: Variational analysis of effective soil moisture from screen-level atmospheric parameters: Application to a short-range weather forecast model. Quart. J. Roy. Meteor. Soc., 125 , 24272448.

    • Search Google Scholar
    • Export Citation
  • Rogers, E., D. Parrish, and G. DiMego, 1999: Changes to the NCEP operational eta analysis. Tech. Rep. 454, National Weather Service Technical Procedures Bulletin, 25 pp.

  • Rotunno, R., W. C. Skamarock, and C. Snyder, 1998: Effects of surface drag on fronts within numerically simulated baroclinic waves. J. Atmos. Sci., 55 , 21192129.

    • Search Google Scholar
    • Export Citation
  • Ruggiero, F. H., K. D. Sashegyi, R. V. Madala, and S. Raman, 1996: The use of surface observations in four-dimensional data assimilation using a mesoscale model. Mon. Wea. Rev., 124 , 10181033.

    • Search Google Scholar
    • Export Citation
  • Shafran, P. C., N. L. Seaman, and G. A. Gayno, 2000: Evaluation of numerical predictions of boundary layer structure during the Lake Michigan Ozone Study. J. Appl. Meteor., 39 , 412426.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the advanced research WRF version 2. NCAR Tech. Rep. TN-468, 100 pp.

  • Snyder, C., and F. Zhang, 2003: Assimilation of simulated doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131 , 16631677.

    • Search Google Scholar
    • Export Citation
  • Stauffer, D. R., and N. L. Seaman, 1994: Multiscale four-dimensional data assimilation. J. Appl. Meteor., 33 , 416434.

  • Stauffer, D. R., N. L. Seaman, and F. S. Binkowski, 1991: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part II: Effects of data assimilation within the planetary boundary layer. Mon. Wea. Rev., 119 , 734754.

    • Search Google Scholar
    • Export Citation
  • Troen, I., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer: Sensitivity to surface evaporation. Bound.-Layer Meteor., 37 , 129148.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130 , 19131924.

  • Zhang, D., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21 , 15941609.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 92 50 5
PDF Downloads 47 24 0

Ensemble Kalman Filter Assimilation of Fixed Screen-Height Observations in a Parameterized PBL

View More View Less
  • 1 National Center for Atmospheric Research,* Boulder, Colorado
Restricted access

Abstract

In situ surface layer observations are a rich data source that could be more effectively utilized in NWP applications. If properly assimilated, data from existing mesonets could improve initial conditions and lower boundary conditions, leading to the possibility of improved simulation and short-range forecasts of slope flows, sea breezes, convective initiation, and other PBL circulations.

A variance–covariance climatology is constructed by extracting a representative column from real-time mesoscale forecasts over the Southern Great Plains, and used to explore the potential for estimating the state of the PBL by assimilating surface observations. A parameterized 1D PBL model and an ensemble Kalman filter (EnKF) approach to assimilation are used to test this potential. Analysis focuses on understanding how effectively the EnKF can spread the surface observations vertically to constrain the state of the PBL model. Results confirm that assimilating surface observations can substantially improve the state of a modeled PBL. Experiments to estimate the moisture availability parameter through the data assimilation system show that the EnKF is a viable tool for parameter estimation, and may help mitigate model error in forecasting and simulating the PBL.

Corresponding author address: Joshua Hacker, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. Email: hacker@ucar.edu

Abstract

In situ surface layer observations are a rich data source that could be more effectively utilized in NWP applications. If properly assimilated, data from existing mesonets could improve initial conditions and lower boundary conditions, leading to the possibility of improved simulation and short-range forecasts of slope flows, sea breezes, convective initiation, and other PBL circulations.

A variance–covariance climatology is constructed by extracting a representative column from real-time mesoscale forecasts over the Southern Great Plains, and used to explore the potential for estimating the state of the PBL by assimilating surface observations. A parameterized 1D PBL model and an ensemble Kalman filter (EnKF) approach to assimilation are used to test this potential. Analysis focuses on understanding how effectively the EnKF can spread the surface observations vertically to constrain the state of the PBL model. Results confirm that assimilating surface observations can substantially improve the state of a modeled PBL. Experiments to estimate the moisture availability parameter through the data assimilation system show that the EnKF is a viable tool for parameter estimation, and may help mitigate model error in forecasting and simulating the PBL.

Corresponding author address: Joshua Hacker, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. Email: hacker@ucar.edu

Save