• Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129 , 28842903.

  • Anderson, J. L., 2003: A local least squares framework for ensemble filtering. Mon. Wea. Rev., 131 , 634642.

  • Behringer, D. W., M. Ji, and A. Leetmaa, 1998: An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: The ocean data assimilation system. Mon. Wea. Rev., 126 , 10131021.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., B. J. Etherton, and S. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129 , 420436.

    • Search Google Scholar
    • Export Citation
  • Derber, J., and A. Rosati, 1989: A global oceanic data assimilation system. J. Phys. Oceanogr., 19 , 13331347.

  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 , 1014310162.

    • Search Google Scholar
    • Export Citation
  • Ezer, T., and G. L. Mellor, 1994: Continuous assimilation of Geosat altimeter data into a three-dimensional primitive equation Gulf Stream model. J. Phys. Oceanogr., 24 , 832847.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., and S. G. Philander, 2001: Is El Niño changing? Science, 288 , 19972001.

  • Fukumori, I., 2002: A partitioned Kalman filter and smoother. Mon. Wea. Rev., 130 , 13701383.

  • Galanti, E., E. Tziperman, M. J. Harrison, A. Rosati, and Z. Sirkes, 2003: A study of ENSO prediction using a hybrid coupled model and the adjoint method for data assimilation. Mon. Wea. Rev., 131 , 27482764.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125 , 723757.

    • Search Google Scholar
    • Export Citation
  • Gill, P. E., W. Murray, and M. H. Wright, 1981: Practical Optimization. Academic Press, 401 pp.

  • Glantz, M. H., R. W. Katz, and N. Nicholls, 1991: Teleconnections Linking Worldwide Climate Anomalies: Scientific Basis and Societal Impact. Cambridge University Press, 535 pp.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and R. W. Hallberg, 2000: Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon. Wea. Rev., 128 , 29352946.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., M. J. Harrison, R. C. Pacanowski, and A. Rosati, 2003: A technical guide to MOM4. GFDL Ocean Group Tech. Rep. 5, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ, 295 pp.

  • Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129 , 27762790.

    • Search Google Scholar
    • Export Citation
  • Harrison, M. J., A. Rosati, R. Gudgel, and J. Anderson, 1996: Initialization of coupled model forecasts using an improved ocean data assimilation system. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 7.

  • Harrison, M. J., A. Rosati, B. J. Soden, E. Galanti, and E. Tziperman, 2002: An evaluation of air–sea flux products for ENSO simulation and prediction. Mon. Wea. Rev., 130 , 723732.

    • Search Google Scholar
    • Export Citation
  • Holland, W. R., J. C. Chow, and F. O. Bryan, 1998: Application of a third-order upwind scheme in the NCAR ocean model. J. Climate, 11 , 14871493.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126 , 796811.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129 , 123137.

    • Search Google Scholar
    • Export Citation
  • Jazwinski, A. H., 1970: Stochastic Processes and Filtering Theory. Academic Press, 376 pp.

  • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 341 pp.

  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and T. P. Boyer, 1994: Temperature. Vol. 4, World Ocean Atlas 1994, NOAA Atlas NESDIS 4, 117 pp.

  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the Tropics. J. Atmos. Sci., 44 , 24182436.

    • Search Google Scholar
    • Export Citation
  • Navon, I. M., and D. M. Legler, 1987: Conjugate-gradient methods for large-scale minimization in meteorology. Mon. Wea. Rev., 115 , 14791502.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., 1991: The slow sea surface temperature mode and the fast-wave limit: Analytic theory for tropical interannual oscillations and experiments in a hybrid coupled model. J. Atmos. Sci., 48 , 584606.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., D. S. Battisti, A. C. Hirst, F-F. Jin, Y. Wakata, T. Yamagata, and S. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103 , 1426114290.

    • Search Google Scholar
    • Export Citation
  • Ott, E., B. R. Hunt, I. Szunyogh, A. V. Zimin, E. J. Kostelich, M. Corazza, E. Kalnay, and D. J. Patil, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A , 415428.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and J. Wallace, 1983: Meterological aspects of the El Nino/Southern Oscillation. Science, 222 , 11951202.

  • Rosati, A., K. Miyakoda, and R. Gudgel, 1997: The impact of ocean initial conditions on ENSO forecasting with a coupled model. Mon. Wea. Rev., 125 , 754772.

    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillatory for ENSO. J. Atmos. Sci., 45 , 32833287.

  • Sun, D-Z., and Z. Liu, 1996: Dynamic ocean–atmosphere coupling: A thermostat for the Tropics. Science, 272 , 11481150.

  • Sweeney, C., A. Gnanadesikan, S. M. Griffies, M. J. Harrison, A. J. Rosati, and B. L. Samuels, 2005: Impacts of shortwave penetration depth on large-scale ocean circulation and heat transport. J. Phys. Oceanogr., 35 , 11031119.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker, 2003: Ensemble square root filters. Mon. Wea. Rev., 131 , 14851490.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. T., J. Vialard, and B. L. T. Anderson, 2003: Three- and four-dimensional variational assimilation with a general circulation model of the tropical Pacific Ocean. Part I: Formulation, internal diagnostics and consistency checks. Mon. Wea. Rev., 131 , 13601378.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130 , 19131924.

  • Wittenberg, A. T., 2002: ENSO response to altered climates. Ph.D. thesis, Princeton University, 475 pp.

  • Wittenberg, A. T., 2004: Extended wind stress analyses for ENSO. J. Climate, 17 , 25262540.

  • Wu, W. S., and R. J. Purser, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariance. Mon. Wea. Rev., 130 , 29052916.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115 , 22622278.

  • Zhang, S., and J. L. Anderson, 2003: Impact of spatially and temporally varying estimates of error covariance on assimilation in a simple atmospheric model. Tellus, 55A , 126147.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., J. L. Anderson, A. Rosati, M. J. Harrison, S. P. Khare, and A. Wittenberg, 2004: Multiple time level adjustment for data assimilation. Tellus, 56A , 215.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 416 211 19
PDF Downloads 83 49 0

Initialization of an ENSO Forecast System Using a Parallelized Ensemble Filter

View More View Less
  • 1 Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey
  • | 2 NCAR, Boulder, Colorado
  • | 3 Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey
Restricted access

Abstract

As a first step toward coupled ocean–atmosphere data assimilation, a parallelized ensemble filter is implemented in a new stochastic hybrid coupled model. The model consists of a global version of the GFDL Modular Ocean Model Version 4 (MOM4), coupled to a statistical atmosphere based on a regression of National Centers for Environmental Prediction (NCEP) reanalysis surface wind stress, heat, and water flux anomalies onto analyzed tropical Pacific SST anomalies from 1979 to 2002. The residual part of the NCEP fluxes not captured by the regression is then treated as stochastic forcing, with different ensemble members feeling the residual fluxes from different years. The model provides a convenient test bed for coupled data assimilation, as well as a prototype for representing uncertainties in the surface forcing.

A parallel ensemble adjustment Kalman filter (EAKF) has been designed and implemented in the hybrid model, using a local least squares framework. Comparison experiments demonstrate that the massively parallel processing EAKF (MPPEAKF) produces assimilation results with essentially the same quality as a global sequential analysis. Observed subsurface temperature profiles from expendable bathythermographs (XBTs), Tropical Atmosphere Ocean (TAO) buoys, and Argo floats, along with analyzed SSTs from NCEP, are assimilated into the hybrid model over 1980–2002 using the MPPEAKF. The filtered ensemble of SSTs, ocean heat contents, and thermal structures converge well to the observations, in spite of the imposed stochastic forcings. Several facets of the EAKF algorithm used here have been designed to facilitate comparison to a traditional three-dimensional variational data assimilation (3DVAR) algorithm, for instance, the use of a univariate filter in which observations of temperature only directly impact temperature state variables. Despite these choices that may limit the power of the EAKF, the MPPEAKF solution appears to improve upon an earlier 3DVAR solution, producing a smoother, more physically reasonable analysis that better fits the observational data and produces, to some degree, a self-consistent estimate of analysis uncertainties. Hybrid model ENSO forecasts initialized from the MPPEAKF ensemble mean also appear to outperform those initialized from the 3DVAR analysis. This improvement stems from the EAKF’s utilization of anisotropic background error covariances that may vary in time.

Corresponding author address: Dr. S. Zhang, NOAA/GFDL, Princeton University, P.O. Box 308, Princeton, NJ 08542. Email: snz@gfdl.noaa.gov

Abstract

As a first step toward coupled ocean–atmosphere data assimilation, a parallelized ensemble filter is implemented in a new stochastic hybrid coupled model. The model consists of a global version of the GFDL Modular Ocean Model Version 4 (MOM4), coupled to a statistical atmosphere based on a regression of National Centers for Environmental Prediction (NCEP) reanalysis surface wind stress, heat, and water flux anomalies onto analyzed tropical Pacific SST anomalies from 1979 to 2002. The residual part of the NCEP fluxes not captured by the regression is then treated as stochastic forcing, with different ensemble members feeling the residual fluxes from different years. The model provides a convenient test bed for coupled data assimilation, as well as a prototype for representing uncertainties in the surface forcing.

A parallel ensemble adjustment Kalman filter (EAKF) has been designed and implemented in the hybrid model, using a local least squares framework. Comparison experiments demonstrate that the massively parallel processing EAKF (MPPEAKF) produces assimilation results with essentially the same quality as a global sequential analysis. Observed subsurface temperature profiles from expendable bathythermographs (XBTs), Tropical Atmosphere Ocean (TAO) buoys, and Argo floats, along with analyzed SSTs from NCEP, are assimilated into the hybrid model over 1980–2002 using the MPPEAKF. The filtered ensemble of SSTs, ocean heat contents, and thermal structures converge well to the observations, in spite of the imposed stochastic forcings. Several facets of the EAKF algorithm used here have been designed to facilitate comparison to a traditional three-dimensional variational data assimilation (3DVAR) algorithm, for instance, the use of a univariate filter in which observations of temperature only directly impact temperature state variables. Despite these choices that may limit the power of the EAKF, the MPPEAKF solution appears to improve upon an earlier 3DVAR solution, producing a smoother, more physically reasonable analysis that better fits the observational data and produces, to some degree, a self-consistent estimate of analysis uncertainties. Hybrid model ENSO forecasts initialized from the MPPEAKF ensemble mean also appear to outperform those initialized from the 3DVAR analysis. This improvement stems from the EAKF’s utilization of anisotropic background error covariances that may vary in time.

Corresponding author address: Dr. S. Zhang, NOAA/GFDL, Princeton University, P.O. Box 308, Princeton, NJ 08542. Email: snz@gfdl.noaa.gov

Save