• Andreas, E. L., 1995: The temperature of evaporating sea spray droplets. J. Atmos. Sci., 52 , 852862.

  • Atlas, D., K. R. Hardy, R. Wexler, and R. J. Boucher, 1963: On the origin of hurricane spiral bands. Geofis. Int., 3 , 123132.

  • Barnes, G. M., and M. D. Powell, 1995: Evolution of the inflow boundary layer of Hurricane Gilbert (1988). Mon. Wea. Rev., 123 , 23482368.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., and P. B. Bogner, 2001: Comments on “Surface observations in the hurricane environment.”. Mon. Wea. Rev., 129 , 12671269.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., G. D. Emmitt, B. Brummer, M. A. LeMone, and S. Nicholls, 1980: The structure of a fair weather boundary layer based on the results of several measurement strategies. Mon. Wea. Rev., 108 , 349364.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., E. J. Zipser, D. Jorgensen, and F. D. Marks, 1983: Mesoscale and convective structure of a hurricane rainband. J. Atmos. Sci., 40 , 21252137.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., R. E. Tuleya, and Y. Kurihara, 1985: A numerical study of the effect of a mountain range on a landfalling tropical cyclone. Mon. Wea. Rev., 113 , 567582.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., R. E. Tuleya, and Y. Kurihara, 1987: A numerical study of the effect of island terrain on tropical cyclones. Mon. Wea. Rev., 115 , 130155.

    • Search Google Scholar
    • Export Citation
  • Black, P. G., and G. J. Holland, 1995: The boundary layer of Tropical Cyclone Kerry (1979). Mon. Wea. Rev., 123 , 20072028.

  • Blackwell, K. G., 2000: The evolution of Hurricane Danny (1997) at landfall: Doppler-observed eyewall replacement, vortex contraction/intensification, and low-level wind maxima. Mon. Wea. Rev., 128 , 40024016.

    • Search Google Scholar
    • Export Citation
  • Bogner, P. B., G. M. Barnes, and J. L. Franklin, 2000: Conditional instability and shear for six hurricanes over the Atlantic Ocean. Wea. Forecasting, 15 , 192207.

    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108 , 10461053.

  • Brand, S., and J. W. Blelloch, 1973: Changes in the characteristics of typhoons crossing the Philippines. J. Appl. Meteor., 12 , 104109.

    • Search Google Scholar
    • Export Citation
  • Brand, S., and J. W. Blelloch, 1974: Changes in the characteristics of typhoons crossing the island of Taiwan. Mon. Wea. Rev., 102 , 708713.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., and X. Liang, 2003: Convective asymmetries associated with tropical cyclone landfall. Part I: f-plane simulations. J. Atmos. Sci., 60 , 15601576.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., and M. K. Yau, 2003: Asymmetric structures in a simulated landfalling hurricane. J. Atmos. Sci., 60 , 22942312.

  • Cione, J. J., P. G. Black, and S. H. Houston, 2000: Surface observations in the hurricane environment. Mon. Wea. Rev., 128 , 15501561.

    • Search Google Scholar
    • Export Citation
  • Daida, S. K., and G. M. Barnes, 2003: Hurricane Paine (1986) grazes the high terrain of the Baja California peninsula. Wea. Forecasting, 18 , 981990.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., 2003: Buoyancy of convective vertical motions in the inner core of intense hurricanes. Ph.D. dissertation, Dept. of Atmospheric Science, Colorado State University, 152 pp.

  • Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43 , 585605.

    • Search Google Scholar
    • Export Citation
  • Hanley, D., J. Molinari, and D. Keyser, 2001: A composite study of the interactions between tropical cyclones and upper-tropospheric troughs. Mon. Wea. Rev., 129 , 25702584.

    • Search Google Scholar
    • Export Citation
  • Hawkins, H. F., and S. M. Imbembo, 1976: The structure of a small, intense hurricane, Inez (1966). Mon. Wea. Rev., 104 , 418442.

  • Hock, T. F., and J. L. Franklin, 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc., 80 , 407420.

  • Howard, J. R., A. L. Doggett, R. E. Peterson, P. G. Black, J. L. Schroeder, D. A. Smith, and J. P. Dunyak, 2004: Transition in onshore hurricane boundary layer winds during the landfall of Hurricane Lili (2002). Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 526–527.

  • Jordan, C. L., 1958: Mean soundings for the West Indies area. J. Meteor., 15 , 9197.

  • Jorgensen, D. P., 1984: Mesoscale and convective-scale characteristics of mature hurricanes. Part II: Inner core structure of Hurricane Allen (1980). J. Atmos. Sci., 41 , 12871311.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., and P. T. Willis, 1982: A ZR relationship for hurricanes. J. Appl. Meteor., 21 , 356366.

  • Kepert, J. D., 2002: The wind-field structure of the tropical cyclone boundary layer. Ph.D. thesis, Dept. of Mathematics and Statistics, Monash University, 350 pp. [Available from Dept. of Mathematics and Statistics, Monash University, Vic 3800, Australia.].

  • Knupp, K. R., J. Walters, and M. Biggerstaff, 2004a: Doppler profiler and radar observations of boundary layer variability during the landfall of TS Gabreille. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 568–569.

  • Knupp, K. R., J. Walters, and M. Biggerstaff, 2004b: Mesoscale and precipitation processes observed by Doppler profiler and radar during the landfall of Tropical Storm Gabrielle. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 570–571.

  • Marks Jr., F. D., 1985: Evolution of the structure of precipitation in Hurricane Allen (1980). Mon. Wea. Rev., 113 , 909930.

  • Marks Jr., F. D., R. A. Houze, and J. F. Gamache, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part I: Kinematic structure. J. Atmos. Sci., 49 , 919942.

    • Search Google Scholar
    • Export Citation
  • Miller, B. I., 1964: A study of the filling of Hurricane Donna (1960) over land. Mon. Wea. Rev., 92 , 389406.

  • Molinari, J., P. K. Moore, and V. P. Idone, 1999: Convective structure of hurricanes as revealed by lightning locations. Mon. Wea. Rev., 127 , 520534.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1982: The transition of the Hurricane Frederic boundary layer wind field of the open Gulf of Mexico to landfall. Mon. Wea. Rev., 110 , 19121932.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1987: Changes in the low-level kinematic and thermodynamic structure of Hurricane Alicia (1983) at landfall. Mon. Wea. Rev., 115 , 7599.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1990: Boundary layer structure and dynamics in outer hurricane rainbands. Mon. Wea. Rev., 118 , 891917.

  • Powell, M. D., and S. H. Houston, 1996: Hurricane Andrew’s landfall in south Florida. Part II: Surface wind fields and potential real-time applications. Wea. Forecasting, 11 , 329349.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. P. Dodge, and M. L. Black, 1991: The landfall of Hurricane Hugo in the Carolinas: Surface wind distribution. Wea. Forecasting, 6 , 379399.

    • Search Google Scholar
    • Export Citation
  • Raman, S., 1979: Atmospheric turbulence and storm surge due to Hurricane Belle (1976). Mon. Wea. Rev., 107 , 314321.

  • Reasor, P. D., M. T. Montgomery, F. D. Marks Jr., and J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128 , 16531680.

    • Search Google Scholar
    • Export Citation
  • Rodgers, R., S. Chen, J. Tenerelli, and H. Willoughby, 2003: A numerical study of the impact of vertical shear on the distribution of rainfall in Hurricane Bonnie (1998). Mon. Wea. Rev., 131 , 15771599.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. A. Emanuel, 1987: An air-sea interaction theory for tropical cyclones. Part II: Evolutionary study using a non-hydrostatic axisymmetric numerical model. J. Atmos. Sci., 44 , 542561.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1983: The asymmetric boundary layer flow under a translating hurricane. J. Atmos. Sci., 40 , 19841998.

  • Shea, D. J., and W. M. Gray, 1973: The hurricane’s inner core region. Part I: Symmetric and asymmetric structure. J. Atmos. Sci., 30 , 15441564.

    • Search Google Scholar
    • Export Citation
  • Spratt, S. M., F. D. Marks, P. P. Dodge, and D. W. Sharp, 2000: Examining the pre-landfall environment of mesovortices within a Hurricane Bonnie (1998) outer rainband. Preprints, 24th Conf. on Hurricanes and Tropical Meteorology, Ft. Lauderdale, FL, Amer. Meteor. Soc., 300–301.

  • Tuleya, R. E., 1994: Tropical storm development and decay: Sensitivity to surface boundary conditions. Mon. Wea. Rev., 122 , 291304.

  • Tuleya, R. E., and Y. Kurihara, 1978: Numerical simulation of the landfall of tropical cyclones. J. Atmos. Sci., 35 , 242257.

  • Willoughby, H. E., and M. B. Chelmow, 1982: Objective determination of hurricane tracks from aircraft observations. Mon. Wea. Rev., 110 , 12981305.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., F. D. Marks Jr., and R. J. Feinberg, 1984: Stationary and moving convective bands in hurricanes. J. Atmos. Sci., 41 , 31893211.

    • Search Google Scholar
    • Export Citation
  • Wroe, D. R., and G. M. Barnes, 2003: Inflow layer energetics of Hurricane Bonnie (1998) near landfall. Mon. Wea. Rev., 131 , 16001612.

    • Search Google Scholar
    • Export Citation
  • Wu, C-C., and Y. H. Kuo, 1999: Typhoons affecting Taiwan: Current understanding and future challenges. Bull. Amer. Meteor. Soc., 80 , 6780.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 67 38 1
PDF Downloads 36 22 2

Low-Level Kinematic, Thermodynamic, and Reflectivity Fields Associated with Hurricane Bonnie (1998) at Landfall

View More View Less
  • 1 University of Hawaii at Manoa, Honolulu, Hawaii
Restricted access

Abstract

During 11 h on 26 August 1998, two NOAA WP-3D aircraft deployed 85 Global Positioning System (GPS) dropwindsondes within 2° of latitude of the circulation center of Hurricane Bonnie as it made landfall in North Carolina. About 75% of the sondes successfully collected data, which were used to create a series of storm-relative horizontal maps of kinematic and thermodynamic variables from 10 m to 2 km. Reflectivity fields were analyzed from the Weather Surveillance Radar-1988 Dopplers (WSR-88Ds) located at Wilmington and Morehead City, North Carolina, and the tail and lower fuselage radars aboard the WP-3Ds.

GPS sonde performance and deployment spacing is adequate to identify several aspects of the vortex. These include 1) warm, dry, stable air in the offshore flow that results in reduced equivalent potential temperatures entering the southern portion of the eyewall, 2) cooler air collocated with the upwelled water in the right-rear quadrant and under the eyewall, and 3) an atypical radial wind pattern with strong inflow southwest of the circulation center and outflow northeast of the center. The strongly asymmetric structure found at 10 m becomes much more homogeneous by 2-km altitude.

No intense rainbands developed over land in the onshore flow nor did the bands in the onshore flow undergo any significant changes once they made landfall. Beyond the eyewall the offshore flow contained much less precipitation than the onshore portion of the storm.

Characteristics beyond the eyewall appear to have been modulated by the proximity to land but hurricane intensity did not vary. The authors infer that the lower energy content of the inflow was offset by the contraction of the eyewall.

Corresponding author address: G. M. Barnes, Dept. of Meteorology, University of Hawaii at Manoa, 2525 Correa Rd., Honolulu, HI 96822. Email: gbarnes@hawaii.edu

Abstract

During 11 h on 26 August 1998, two NOAA WP-3D aircraft deployed 85 Global Positioning System (GPS) dropwindsondes within 2° of latitude of the circulation center of Hurricane Bonnie as it made landfall in North Carolina. About 75% of the sondes successfully collected data, which were used to create a series of storm-relative horizontal maps of kinematic and thermodynamic variables from 10 m to 2 km. Reflectivity fields were analyzed from the Weather Surveillance Radar-1988 Dopplers (WSR-88Ds) located at Wilmington and Morehead City, North Carolina, and the tail and lower fuselage radars aboard the WP-3Ds.

GPS sonde performance and deployment spacing is adequate to identify several aspects of the vortex. These include 1) warm, dry, stable air in the offshore flow that results in reduced equivalent potential temperatures entering the southern portion of the eyewall, 2) cooler air collocated with the upwelled water in the right-rear quadrant and under the eyewall, and 3) an atypical radial wind pattern with strong inflow southwest of the circulation center and outflow northeast of the center. The strongly asymmetric structure found at 10 m becomes much more homogeneous by 2-km altitude.

No intense rainbands developed over land in the onshore flow nor did the bands in the onshore flow undergo any significant changes once they made landfall. Beyond the eyewall the offshore flow contained much less precipitation than the onshore portion of the storm.

Characteristics beyond the eyewall appear to have been modulated by the proximity to land but hurricane intensity did not vary. The authors infer that the lower energy content of the inflow was offset by the contraction of the eyewall.

Corresponding author address: G. M. Barnes, Dept. of Meteorology, University of Hawaii at Manoa, 2525 Correa Rd., Honolulu, HI 96822. Email: gbarnes@hawaii.edu

Save