Modulation of Daily Precipitation over Southwest Asia by the Madden–Julian Oscillation

Mathew Barlow Atmospheric and Environmental Research, Inc., Lexington, Massachusetts

Search for other papers by Mathew Barlow in
Current site
Google Scholar
PubMed
Close
,
Matthew Wheeler Bureau of Meteorology Research Centre, Melbourne, Australia

Search for other papers by Matthew Wheeler in
Current site
Google Scholar
PubMed
Close
,
Bradfield Lyon International Research Institute for Climate Prediction, Palisades, New York

Search for other papers by Bradfield Lyon in
Current site
Google Scholar
PubMed
Close
, and
Heidi Cullen The Weather Channel, and Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Heidi Cullen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Analysis of daily observations shows that wintertime (November–April) precipitation over Southwest Asia is modulated by Madden–Julian oscillation (MJO) activity in the eastern Indian Ocean, with strength comparable to the interannual variability. Daily outgoing longwave radiation (OLR) for 1979–2001 is used to provide a long and consistent, but indirect, estimate of precipitation, and daily records from 13 stations in Afghanistan reporting at least 50% of the time for 1979–85 are used to provide direct, but shorter and irregularly reported, precipitation data. In the station data, for the average of all available stations, there is a 23% increase in daily precipitation relative to the mean when the phase of the MJO is negative (suppressed tropical convection in the eastern Indian Ocean), and a corresponding decrease when the MJO is positive. The distribution of extremes is also affected such that the 10 wettest days all occur during the negative MJO phase. The longer record of OLR data indicates that the effect of the MJO is quite consistent from year to year, with the anomalies averaged over Southwest Asia more negative (indicating more rain) for the negative phase of the MJO for each of the 22 yr in the record. Additionally, in 9 of the 22 yr the average influence of the MJO is larger than the interannual variability (e.g., the relationship results in anomalously wet periods even in dry years and vice versa).

Examination of NCEP–NCAR reanalysis data shows that the MJO modifies both the local jet structure and, through changes to the thermodynamic balance, the vertical motion field over Southwest Asia, consistent with the observed modulation of the associated synoptic precipitation. A simple persistence scheme for forecasting the sign of the MJO suggests that the modulation of Southwest Asia precipitation may be predictable for 3-week periods. Finally, analysis of changes in storm evolution in Southwest Asia due to the influence of the MJO shows a large difference in strength as the storms move over Afghanistan, with apparent relevance for the flooding event of 12–13 April 2002.

Corresponding author address: Dr. Mathew Barlow, University of Massachusetts—Lowell, One University Avenue, Lowell, MA 01854. Email: Mathew_Barlow@uml.edu

Abstract

Analysis of daily observations shows that wintertime (November–April) precipitation over Southwest Asia is modulated by Madden–Julian oscillation (MJO) activity in the eastern Indian Ocean, with strength comparable to the interannual variability. Daily outgoing longwave radiation (OLR) for 1979–2001 is used to provide a long and consistent, but indirect, estimate of precipitation, and daily records from 13 stations in Afghanistan reporting at least 50% of the time for 1979–85 are used to provide direct, but shorter and irregularly reported, precipitation data. In the station data, for the average of all available stations, there is a 23% increase in daily precipitation relative to the mean when the phase of the MJO is negative (suppressed tropical convection in the eastern Indian Ocean), and a corresponding decrease when the MJO is positive. The distribution of extremes is also affected such that the 10 wettest days all occur during the negative MJO phase. The longer record of OLR data indicates that the effect of the MJO is quite consistent from year to year, with the anomalies averaged over Southwest Asia more negative (indicating more rain) for the negative phase of the MJO for each of the 22 yr in the record. Additionally, in 9 of the 22 yr the average influence of the MJO is larger than the interannual variability (e.g., the relationship results in anomalously wet periods even in dry years and vice versa).

Examination of NCEP–NCAR reanalysis data shows that the MJO modifies both the local jet structure and, through changes to the thermodynamic balance, the vertical motion field over Southwest Asia, consistent with the observed modulation of the associated synoptic precipitation. A simple persistence scheme for forecasting the sign of the MJO suggests that the modulation of Southwest Asia precipitation may be predictable for 3-week periods. Finally, analysis of changes in storm evolution in Southwest Asia due to the influence of the MJO shows a large difference in strength as the storms move over Afghanistan, with apparent relevance for the flooding event of 12–13 April 2002.

Corresponding author address: Dr. Mathew Barlow, University of Massachusetts—Lowell, One University Avenue, Lowell, MA 01854. Email: Mathew_Barlow@uml.edu

Save
  • Aizen, E. M., V. B. Aizen, J. M. Melack, T. Nakamura, and T. Ohta, 2001: Precipitation and atmospheric circulation patterns at mid-latitudes of Asia. Int. J. Climatol., 21 , 535556.

    • Search Google Scholar
    • Export Citation
  • Arkin, P., and B. Meisner, 1987: The relationship between large-scale convective rainfall and cold cloud over the Western Hemisphere during 1982–84. Mon. Wea. Rev., 115 , 5174.

    • Search Google Scholar
    • Export Citation
  • Barlow, M., S. Nigam, and E. H. Berbery, 1998: Evolution of the North American monsoon system. J. Climate, 11 , 22382257.

  • Barlow, M., H. Cullen, and B. Lyon, 2002: Drought in central and southwest Asia: La Niña, the warm pool, and Indian Ocean precipitation. J. Climate, 15 , 697700.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M., J. Wallace, N-C. Lau, and S. Mullen, 1977: An observational study of the Northern Hemisphere wintertime circulation. J. Atmos. Sci., 34 , 10401053.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 1993: Synoptic-Dynamic Meteorology in Midlatitudes. Vol. II, Observations and Theory of Weather Systems, Oxford University Press, 594 pp.

    • Search Google Scholar
    • Export Citation
  • Bond, N., and G. Vecchi, 2003: The influence of the Madden–Julian oscillation on precipitation in Oregon and Washington. Wea. Forecasting, 18 , 600613.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1985: Analysis of general circulation model sea surface temperature anomaly simulations using a linear model. Part I: Forced solutions. J. Atmos. Sci., 42 , 22252241.

    • Search Google Scholar
    • Export Citation
  • Cai, M., and M. Mak, 1990: On the basic dynamics of regional cyclogenesis. J. Atmos. Sci., 47 , 14171442.

  • Chang, C-P., and K. M. Lau, 1982: Short-term planetary-scale interactions over the Tropics and midlatitudes during northern winter. Part I: Contrasts between active and inactive periods. Mon. Wea. Rev., 110 , 933946.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and R. A. Anthes, 1989: Storm and Cloud Dynamics. Academic Press, 883 pp.

  • Gill, A., 1980: Some simple solutions for heat induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106 , 447462.

  • Goswami, B. N., R. S. Ajayamohan, P. K. Xavier, and D. Sengupta, 2003: Clustering of synoptic activity by Indian summer monsoon intraseasonal oscillations. Geophys. Res. Lett., 30 .1431, doi:10.1029/2002GL016734.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., 1988: A simple model of the 40–50 day oscillation. J. Atmos. Sci., 45 , 569584.

  • Hendon, H. H., and B. Liebmann, 1990: The intraseasonal (30–50 day) oscillation of the Australian summer monsoon. J. Atmos. Sci., 47 , 29092923.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51 , 22252237.

  • Hendon, H. H., and M. Salby, 1996: Planetary-scale circulations forced by intraseasonal variations of observed convection. J. Atmos. Sci., 53 , 17511760.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., J. K. Schemm, W. Shi, and A. Leetmaa, 2000: Extreme precipitation events in the western United States related to tropical forcing. J. Climate, 13 , 793820.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M., and A. Kumar, 2003: The perfect ocean for drought. Science, 299 , 691694.

  • Holton, J., 1992: An Introduction to Dynamic Meteorology. 3d ed. Academic Press, 511 pp.

  • Hoskins, B. J., 1986: Diagnosis of forced and free variability in the atmosphere. Atmospheric and Oceanic Variability, H. Cattle, Ed., Royal Meteorological Society, 57–73.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38 , 11791196.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47 , 18541864.

  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2 , 3650.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., and B. J. Hoskins, 1995: The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 52 , 307319.

  • Jones, C., 2000: Occurrence of extreme precipitation events in California and relationships with the Madden–Julian oscillation. J. Climate, 13 , 35763587.

    • Search Google Scholar
    • Export Citation
  • Jones, C., D. Waliser, and C. Gautier, 1998: The influence of the Madden–Julian oscillation on ocean surface heat fluxes and sea surface temperature. J. Climate, 11 , 10571072.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Krishnamurti, T., 1961: The subtropical jet stream of winter. J. Meteor., 18 , 172191.

  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77 , 12751278.

    • Search Google Scholar
    • Export Citation
  • Lim, G. H., and J. M. Wallace, 1991: Structure and evolution of baroclinic waves as inferred from regression analysis. J. Atmos. Sci., 48 , 17181732.

    • Search Google Scholar
    • Export Citation
  • Lo, F., and H. Hendon, 2000: Empirical extended-range prediction of the Madden–Julian oscillation. Mon. Wea. Rev., 128 , 25282543.

  • Lott, N., cited. 1998: Global surface summary of day. National Climatic Data Center, Asheville, NC. [Available online at http://www.ncdc.noaa.gov/cgi-bin/res40.pl?page=gsod.html.].

  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122 , 814837.

  • Martyn, D., 1992: Climates of the World. Elsevier, 436 pp.

  • Mo, K. C., 1999: Alternating wet and dry episodes over California and intraseasonal oscillations. Mon. Wea. Rev., 127 , 27592776.

  • Mo, K. C., 2001: Adaptive filtering and prediction of intraseasonal oscillations. Mon. Wea. Rev., 129 , 802817.

  • Mo, K. C., and R. W. Higgins, 1998a: Tropical influences on California precipitation. J. Climate, 11 , 412430.

  • Mo, K. C., and R. W. Higgins, 1998b: Tropical convection and precipitation regimes in the western United States. J. Climate, 11 , 24042423.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and R. W. Higgins, 1998c: The Pacific–South American modes and tropical convection during the Southern Hemisphere winter. Mon. Wea. Rev., 126 , 15811596.

    • Search Google Scholar
    • Export Citation
  • Moskowitz, B., and C. Bretherton, 2000: An analysis of frictional feedback on a moist equatorial Kelvin mode. J. Atmos. Sci., 57 , 21882206.

    • Search Google Scholar
    • Export Citation
  • Nazemosadat, M. J., 1998: Persian Gulf sea surface temperature as a drought diagnostic for southern Iran. Drought Network News, Vol. 10, No. 3, International Drought Information Center and the National Drought Mitigation Center, 10–12.

  • Nazemosadat, M. J., and I. Cordery, 2000: On the relationships between ENSO and autumn rainfall in Iran. Int. J. Climatol., 20 , 4761.

    • Search Google Scholar
    • Export Citation
  • New, M. G., M. Hulme, and P. D. Jones, 2000: Representing twentieth-century space–time climate variability. Part II: Development of 1901–1996 monthly grids of terrestrial surface climate. J. Climate, 13 , 22172238.

    • Search Google Scholar
    • Export Citation
  • Nigam, S., 1994: On the dynamical basis for the Asian summer monsoon rainfall–El Niño relationship. J. Climate, 7 , 17501771.

  • Nigam, S., 1997: The annual warm to cold phase transition in the eastern equatorial Pacific: Diagnosis of the role of stratus cloud-top cooling. J. Climate, 10 , 24472467.

    • Search Google Scholar
    • Export Citation
  • Nogues-Paegle, J., and K. C. Mo, 1997: Alternating wet and dry conditions over South America during summer. Mon. Wea. Rev., 125 , 279291.

    • Search Google Scholar
    • Export Citation
  • Nogues-Paegle, J., L. A. Byerle, and K. C. Mo, 2000: Intraseasonal modulation of South American summer precipitation. Mon. Wea. Rev., 128 , 837850.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Petterssen, S., 1958: Introduction to Meteorology. 2d ed. McGraw-Hill, 327 pp.

  • Rodwell, M., and B. J. Hoskins, 1996: Monsoons and the dynamics of deserts. Quart. J. Roy. Meteor. Soc., 122 , 13851404.

  • Rodwell, M., and B. J. Hoskins, 2001: Subtropical anticyclones and summer monsoons. J. Climate, 14 , 31933211.

  • Rui, H., and B. Wang, 1990: Development characteristics and dynamic structure of tropical intraseasonal convection anomalies. J. Atmos. Sci., 47 , 357379.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P., and B. Hoskins, 1988: The generation of global rotation flow by steady idealized tropical divergence. J. Atmos. Sci., 45 , 12281251.

    • Search Google Scholar
    • Export Citation
  • Schubert, S., R. Dole, H. Van den Dool, M. Suarez, and D. Waliser, 2002: Proceedings from a Workshop on Prospects for Improved Forecasts of Weather and Short-Term Climate Variability on Subseasonal (2 Week to 2 Month) Time Scales. Vol. 23, NASA Tech. Memo. 2002-104606, 171 pp.

  • Simmons, A., J. Wallace, and G. Branstator, 1983: Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J. Atmos. Sci., 40 , 13631392.

    • Search Google Scholar
    • Export Citation
  • Ting, M., and P. Sardeshmukh, 1993: Factors determining the extratropical response to equatorial diabatic heating anomalies. J. Atmos. Sci., 50 , 907918.

    • Search Google Scholar
    • Export Citation
  • Tippett, M., M. Barlow, and B. Lyon, 2003: Statistical correction of central southwest Asia winter precipitation simulations. Int. J. Climatol., 23 , 14211433.

    • Search Google Scholar
    • Export Citation
  • Waliser, D., C. Jones, J. K. Schemm, and N. E. Graham, 1999: A statistical extended-range tropical forecast model based on the slow evolution of the Madden–Julian oscillation. J. Climate, 12 , 19181939.

    • Search Google Scholar
    • Export Citation
  • Waliser, D., K. M. Lau, W. Stern, and C. Jones, 2003: Potential predictability of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 84 , 3350.

    • Search Google Scholar
    • Export Citation
  • Wallace, J., G-H. Lim, and M. Blackmon, 1988: Relationship between cyclone tracks, anticyclone tracks and baroclinic waveguides. J. Atmos. Sci., 45 , 439462.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and H. Rui, 1989: Some dynamic aspects of the equatorial intraseasonal oscillations. East Asia and Western Pacific Meteorology and Climate, P. Sham and C.-P. Chang, Eds., World Scientific, 119–130.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and H. Rui, 1990: Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975–1985. Meteor. Atmos. Phys., 44 , 4361.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and K. Weickmann, 2001: Real-time monitoring and prediction of modes of coherent synoptic to intraseasonal tropical variability. Mon. Wea. Rev., 129 , 26772694.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and precipitation. Mon. Wea. Rev., 132 , 19171932.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J., and R. Dole, 1995: Organization of storm tracks in zonally varying flows. J. Atmos. Sci., 52 , 11781191.

  • Whitaker, J., and K. Weickmann, 2001: Subseasonal variations of tropical convection and week-2 prediction of wintertime western North American rainfall. J. Climate, 14 , 32793288.

    • Search Google Scholar
    • Export Citation
  • Yamagata, T., and Y. Hayashi, 1984: A simple diagnostic model for the 30–50 day oscillation in the Tropics. J. Meteor. Soc. Japan, 62 , 709717.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 999 502 24
PDF Downloads 485 140 17