Southern High-Latitude Ensemble Data Assimilation in the Antarctic Mesoscale Prediction System

D. M. Barker National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by D. M. Barker in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Ensemble data assimilation systems incorporate observations into numerical models via solution of the Kalman filter update equations, and estimates of forecast error covariances derived from ensembles of model integrations. In this paper, a particular algorithm, the ensemble square root filter (EnSRF), is tested in a limited-area, polar numerical weather prediction (NWP) model: the Antarctic Mesoscale Prediction System (AMPS).

For application in the real-time AMPS, the number of model integrations that can be run to provide forecast error covariances is limited, resulting in an ensemble sampling error that degrades the analysis fit to observations. In this work, multivariate, climatologically plausible forecast error covariances are specified via averaged forecast difference statistics. Ensemble representations of the “true” forecast errors, created using randomized control variables of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) three-dimensional variational (3DVAR) data assimilation system, are then used to assess the dependence of sampling error on ensemble size, data density, and localization of covariances using simulated observation networks. Results highlight the detrimental impact of ensemble sampling error on the analysis increment structure of correlated, but unobserved fields—an issue not addressed by the spatial covariance localization techniques used to date.

A 12-hourly cycling EnSRF/AMPS assimilation/forecast system is tested for a two-week period in December 2002 using real, conventional (surface, rawinsonde, satellite retrieval) observations. The dependence of forecast scores on methods used to maintain ensemble spread and the inclusion of perturbations to lateral boundary conditions are studied.

Corresponding author address: Dr. D. M. Barker, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. Email: dmbarker@ucar.edu

Abstract

Ensemble data assimilation systems incorporate observations into numerical models via solution of the Kalman filter update equations, and estimates of forecast error covariances derived from ensembles of model integrations. In this paper, a particular algorithm, the ensemble square root filter (EnSRF), is tested in a limited-area, polar numerical weather prediction (NWP) model: the Antarctic Mesoscale Prediction System (AMPS).

For application in the real-time AMPS, the number of model integrations that can be run to provide forecast error covariances is limited, resulting in an ensemble sampling error that degrades the analysis fit to observations. In this work, multivariate, climatologically plausible forecast error covariances are specified via averaged forecast difference statistics. Ensemble representations of the “true” forecast errors, created using randomized control variables of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) three-dimensional variational (3DVAR) data assimilation system, are then used to assess the dependence of sampling error on ensemble size, data density, and localization of covariances using simulated observation networks. Results highlight the detrimental impact of ensemble sampling error on the analysis increment structure of correlated, but unobserved fields—an issue not addressed by the spatial covariance localization techniques used to date.

A 12-hourly cycling EnSRF/AMPS assimilation/forecast system is tested for a two-week period in December 2002 using real, conventional (surface, rawinsonde, satellite retrieval) observations. The dependence of forecast scores on methods used to maintain ensemble spread and the inclusion of perturbations to lateral boundary conditions are studied.

Corresponding author address: Dr. D. M. Barker, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. Email: dmbarker@ucar.edu

Save
  • Anderson, J., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129 , 28842903.

  • Barker, D. M., W. Huang, Y-R. Guo, and A. Bourgeois, 2003: A three-dimensional variational (3DVAR) data assimilation system for use with MM5. NCAR Tech Note NCAR/TN-453+STR, 68 pp. [Available from UCAR Communications, P.O. Box 3000, Boulder, CO 80307.].

  • Barker, D. M., W. Huang, Y-R. Guo, and Q. N. Xiao, 2004: A three-dimensional (3DVAR) data assimilation system for use with MM5: Implementation and initial results. Mon. Wea. Rev., 132 , 897914.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the Ensemble Transform Kalman Filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129 , 420436.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., R. I. Cullather, and R. W. Grumbane, 1999: An assessment of the NCEP operational global spectral model forecasts and analyses for Antarctica during FROST. Wea. Forecasting, 14 , 835850.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., J. J. Cassano, T. Klein, G. Heinemann, K. M. Hines, K. Steffen, and J. E. Box, 2001: Mesoscale modeling of katabatic winds over Greenland with the Polar MM5. Mon. Wea. Rev., 129 , 22902309.

    • Search Google Scholar
    • Export Citation
  • Burgers, G., P. J. van Leeuwen, and G. Evensen, 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126 , 17191724.

  • Cohn, S., A. da Silva, J. Guo, M. Sienkiewicz, and D. Lamich, 1998: Assessing the effects of data selection with the DAO Physical-Space Statistical Analysis System. Mon. Wea. Rev., 126 , 29132926.

    • Search Google Scholar
    • Export Citation
  • Daley, R., and E. Barker, 2001: NAVDAS: Formulation and diagnostics. Mon. Wea. Rev., 129 , 869883.

  • Desroziers, G., 1997: A coordinate change for data assimilation in spherical geometry of frontal structures. Mon. Wea. Rev., 125 , 30303039.

    • Search Google Scholar
    • Export Citation
  • Desroziers, G., and S. Ivanov, 2001: Diagnosis and adaptive tuning of observation-error parameters in a variational assimilation. Quart. J. Roy. Meteor. Soc., 127 , 14331452.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State/NCAR Mesoscale Model: Validation tests and simulations of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121 , 14931513.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 , C5,. 1014310162.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125 , 723757.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129 , 27762790.

    • Search Google Scholar
    • Export Citation
  • Hayden, C. M., and R. J. Purser, 1995: Recursive filter objective analysis of meteorological fields: Applications to NESDIS operational processing. J. Appl. Meteor., 34 , 315.

    • Search Google Scholar
    • Export Citation
  • Hollingsworth, A., and P. Lönnberg, 1986: The statistical structure of short-range forecast errors as determined from radiosonde data. Part I: The wind field. Tellus, 38A , 111136.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126 , 796811.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129 , 123137.

    • Search Google Scholar
    • Export Citation
  • Ingleby, N. B., 2001: The statistical structure of forecast errors and its representation in the Met. Office global 3-D variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 127 , 209232.

    • Search Google Scholar
    • Export Citation
  • Kalman, R., and R. Bucy, 1961: New results in linear prediction and filtering theory. Trans. AMSE J. Basic Eng., 83D , 95108.

  • Key, J. R., D. Santek, C. S. Velden, N. Bormann, J-N. Thepaut, L. P. Riishojgaard, Y. Zhu, and W. P. Menzel, 2003: Cloud-drift and water vapor winds from MODIS. IEEE Trans. Geosci. Remote Sens., 41 , 482492.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP—A comparison with 4D-Var. Quart. J. Roy. Meteor. Soc., 129 , 31833204.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., and Coauthors, 2000: The Met. Office global three-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 126 , 29913012.

    • Search Google Scholar
    • Export Citation
  • Lutz, H. J., W. L. Smith, and E. Raschke, 1990: A note on the improvement of TOVS temperature retrievals above the Antarctic snow and ice fields. J. Geophys. Res., 95 , 1174711754.

    • Search Google Scholar
    • Export Citation
  • Mitchell, H. L., P. L. Houtekamer, and G. Pellerin, 2002: Ensemble size, balance, and model-error representation in an ensemble Kalman filter. Mon. Wea. Rev., 130 , 27912808.

    • Search Google Scholar
    • Export Citation
  • Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s Spectral Statistical Interpolation analysis system. Mon. Wea. Rev., 120 , 17471763.

    • Search Google Scholar
    • Export Citation
  • Powers, J. G., A. J. Monaghan, A. M. Cayette, D. H. Bromwich, Y-H. Kuo, and K. W. Manning, 2003: Real-time mesoscale modeling over Antarctica: The Antarctic Mesoscale Prediction System. Bull. Amer. Meteor. Soc., 84 , 15331545.

    • Search Google Scholar
    • Export Citation
  • Purser, R. J., W-S. Wu, D. F. Parrish, and N. M. Roberts, 2003: Numerical aspects of the application of recursive filters to variational statistical analysis. Part II: Spatially inhomogeneous and anisotropic general covariances. Mon. Wea. Rev., 131 , 15361548.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., J. N. Thépaut, and P. Courtier, 1998a: Extended assimilation and forecast experiments with a four-dimensional variational assimilation system. Quart. J. Roy. Meteor. Soc., 124 , 18611887.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., A. McNally, E. Andersson, P. Courtier, P. Undén, J. Eyre, A. Hollingsworth, and F. Bouttier, 1998b: The ECMWF implementation of three-dimensional variational assimilation (3D-Var): Structure functions. Quart. J. Roy. Meteor. Soc., 124 , 18091829.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., H. Järvinnen, E. Klinker, J-F. Mahfouf, and A. Simmons, 2000: The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Quart. J. Roy. Meteor. Soc., 126 , 11431170.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and A. Hollingsworth, 2002: Some aspects of the improvement in skill of numerical weather prediction. Quart. J. Roy. Meteor. Soc., 128 , 647678.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whittaker, 2003: Ensemble square root filters. Mon. Wea. Rev., 131 , 14851490.

    • Search Google Scholar
    • Export Citation
  • Turner, J., S. Leonard, G. J. Marshall, M. Pook, L. Cowled, R. Jardine, S. Pendlebury, and N. Adams, 1999: An assessment of operational Antarctic analyses based on data from the FROST project. Wea. Forecasting, 14 , 817834.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130 , 19131924.

  • Wu, W-S., R. J. Purser, and D. F. Parrish, 2002: Three-dimensional variational analysis with spatially inohomogeneous covariances. Mon. Wea. Rev., 130 , 29052916.

    • Search Google Scholar
    • Export Citation
  • Zou, X., F. Vandenberghe, M. Pondeca, and Y-H. Kuo, 1997: Introduction to adjoint techniques and the MM5 adjoint modeling system. NCAR Tech. Note NCAR/TN-435+STR, 110 pp. [Available from UCAR Communications, P.O. Box 3000, Boulder, CO 80307.].

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 531 291 24
PDF Downloads 143 66 11