Dynamic Assimilation of MODIS-Retrieved Humidity Profiles within a Regional Model for High-Latitude Forecast Applications

Xingang Fan Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by Xingang Fan in
Current site
Google Scholar
PubMed
Close
and
Jeffrey S. Tilley Regional Weather Information Center, University of North Dakota, Grand Forks, North Dakota

Search for other papers by Jeffrey S. Tilley in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A “hot start” technique is applied to the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) to dynamically assimilate cloud properties and humidity profiles retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on board the NASA Earth Observing System polar-orbiting satellites. The assimilation approach has been studied through extensive numerical experimentation for high-latitude rain events to demonstrate the feasibility and the benefit of the approach on the model cloud and precipitation simulation/forecast.

The ingestion of MODIS-retrieved cloud and clear-air humidity information impacts MM5 cloud fields on both a microphysical and macrophysical level. From short-term (6–12 h) forecast experiments conducted for a preliminary test case and 16 extensive summer and winter experiments, the following primary conclusions have been reached. 1) It is feasible to introduce MODIS-retrieved cloud-top properties and humidity profiles into the MM5 model in a hot start mode without disrupting model stability and evolutionary continuity. 2) The introduction of high-resolution MODIS information produced more accurate humidity fields and resulted in increased mesoscale structure in the cloud and precipitation fields. 3) The opportunistic ingestion of MODIS data at its observation time into the model leads to improved 6–12-h model precipitation forecasts with respect to not only the frequency of occurrences, but also the magnitude of precipitation amounts. 4) Verification with three-dimensional analyses indicates some improvement in model forecasts of temperature, wind, pressure perturbation, and sea level pressure as well. 5) Verification with surface station observations indicates that model forecasts of 2-m temperature, 2-m relative humidity, 10-m winds, and sea level pressure are also improved, most notably for the summer cases. The largest improvement in forecast skill is for 2-m relative humidity (12%).

Corresponding author address: Xingang Fan, Geophysical Institute, University of Alaska Fairbanks, 903 Koyukuk Dr., P.O. Box 757320, Fairbanks, AK 99775-7320. Email: xfan@gi.alaska.edu

Abstract

A “hot start” technique is applied to the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) to dynamically assimilate cloud properties and humidity profiles retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on board the NASA Earth Observing System polar-orbiting satellites. The assimilation approach has been studied through extensive numerical experimentation for high-latitude rain events to demonstrate the feasibility and the benefit of the approach on the model cloud and precipitation simulation/forecast.

The ingestion of MODIS-retrieved cloud and clear-air humidity information impacts MM5 cloud fields on both a microphysical and macrophysical level. From short-term (6–12 h) forecast experiments conducted for a preliminary test case and 16 extensive summer and winter experiments, the following primary conclusions have been reached. 1) It is feasible to introduce MODIS-retrieved cloud-top properties and humidity profiles into the MM5 model in a hot start mode without disrupting model stability and evolutionary continuity. 2) The introduction of high-resolution MODIS information produced more accurate humidity fields and resulted in increased mesoscale structure in the cloud and precipitation fields. 3) The opportunistic ingestion of MODIS data at its observation time into the model leads to improved 6–12-h model precipitation forecasts with respect to not only the frequency of occurrences, but also the magnitude of precipitation amounts. 4) Verification with three-dimensional analyses indicates some improvement in model forecasts of temperature, wind, pressure perturbation, and sea level pressure as well. 5) Verification with surface station observations indicates that model forecasts of 2-m temperature, 2-m relative humidity, 10-m winds, and sea level pressure are also improved, most notably for the summer cases. The largest improvement in forecast skill is for 2-m relative humidity (12%).

Corresponding author address: Xingang Fan, Geophysical Institute, University of Alaska Fairbanks, 903 Koyukuk Dr., P.O. Box 757320, Fairbanks, AK 99775-7320. Email: xfan@gi.alaska.edu

Save
  • Bayler, G. M., R. M. Aune, and W. H. Ramond, 2000: NWP cloud initialization using GOES sounder data and improved modeling of nonprecipitating clouds. Mon. Wea. Rev., 128 , 39113920.

    • Search Google Scholar
    • Export Citation
  • Bua, B., 2003: Short-range ensemble forecasts and initial conditions: The 6–7 January 2002 Northeast snowstorm. Bull. Amer. Meteor. Soc., 84 , 562566.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129 , 569585.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., K. J. Westrick, and C. F. Mass, 1999: Evaluation of MM5 and Eta-10 precipitation forecasts over the Pacific Northwest during the cool season. Wea. Forecasting, 14 , 137154.

    • Search Google Scholar
    • Export Citation
  • Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87 , 367374.

  • Crook, N. A., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev., 124 , 17671785.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46 , 30773107.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., D. O. Gill, K. Manning, W. Wang, and C. Bruyere, 2005: PSU–NCAR MM5 Tutorial Class Notes and User’s Guide: MM5 Modeling System Version 3. 266 pp + appendixes. [Available online at http://www.mmm.ucar.edu/mm5/documents/MM5_tut_Web_notes/tutorialTOC.htm.].

  • Fan, X., and J. S. Tilley, 2001: Application of the Bratseth scheme for high latitude intermittent data assimilation using the PSU/NCAR MM5 mesoscale model. Preprints, 18th Conf. on Weather Analysis and Forecasting/14th Conf. on Numerical Weather Prediction, Ft. Lauderdale, FL, Amer. Meteor. Soc., CD-ROM, JP1.11.

  • Fan, X., and J. S. Tilley, 2002: The impact of assimilating AVHRR-derived humidity on high-latitude MM5 forecasts. Preprints, 15th Conf. on Numerical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc., CD-ROM, P1.4.

  • Fan, X., and J. S. Tilley, 2003: Tests of a satellite-based cloud initialization scheme for high-latitude application in MM5. Preprints, Seventh Conf. on Polar Meteorology and Oceanography, Hyannis, MA, Amer. Meteor. Soc., CD-ROM, 9.6.

  • Francis, J. A., 2002: Validation of reanalysis upper-level winds in the Arctic with independent rawinsonde data. Geophys. Res. Lett., 29 .1315, doi:10.1029/2001GL014578.

    • Search Google Scholar
    • Export Citation
  • Garand, L., and S. Nadon, 1998: High-resolution satellite analysis and model evaluation of clouds and radiation over the Mackenzie Basin using AVHRR data. J. Climate, 11 , 19761996.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121 , 764787.

  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). NCAR Tech. Note NCAR/TN-398+ST, 117 pp.

  • Groves, D. G., and J. A. Francis, 2002: Moisture budget of the Arctic atmosphere from TOVS satellite data. J. Geophys. Res., 107 .4391, doi:10.1029/2001JD001191.

    • Search Google Scholar
    • Export Citation
  • Haag, W., B. Karcher, J. Strom, A. Minikin, J. Ovarlez, U. Lohmann, and A. Stohl, 2003: Freezing thresholds and cirrus cloud formation mechanisms inferred from in situ measurements of relative humidity. Atmos. Chem. Phys., 3 , 17911806.

    • Search Google Scholar
    • Export Citation
  • Harms, D. E., S. Raman, and R. V. Madala, 1992: An examination of four-dimensional data-assimilation techniques for numerical weather prediction. Bull. Amer. Meteor. Soc., 73 , 425440.

    • Search Google Scholar
    • Export Citation
  • Hines, K. M., D. H. Bromwich, and G. J. Marshall, 2000: Artificial surface pressure trends in the NCEP–NCAR reanalysis over the Southern Ocean and Antarctica. J. Climate, 13 , 39403952.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., and H. L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124 , 23222339.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 341 pp.

  • Key, J., D. Santek, C. S. Velden, N. Bormann, J-N. Thepaut, L. P. Riishojgaard, Y. Zhu, and W. P. Menzel, 2003: Cloud-drift and water vapor winds in the polar regions from MODIS. IEEE Trans. Geosci. Remote Sens., 41 , 482492.

    • Search Google Scholar
    • Export Citation
  • King, M. D., and Coauthors, 2003: Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS. IEEE Trans. Geosci. Remote Sens., 41 , 442458.

    • Search Google Scholar
    • Export Citation
  • Lazarus, S. M., S. K. Krueger, and S. A. Frisch, 1999: An evaluation of the Xu–Randall cloud fraction parameterization using ASTEX data. Preprints, 13th Symp. on Boundary Layers and Turbulence, Dallas, TX, Amer. Meteor. Soc., 582–585.

  • Lipton, A. E., 1993: Cloud shading retrieval and assimilation in a satellite-model coupled mesoscale analysis system. Mon. Wea. Rev., 121 , 30623081.

    • Search Google Scholar
    • Export Citation
  • Lipton, A. E., and G. D. Modica, 1999: Assimilation of visible-band satellite data for mesoscale forecasting in cloudy conditions. Mon. Wea. Rev., 127 , 265278.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20 , 130141.

  • Martin, W. J., and M. Xue, 2004: Initial convection sensitivity analysis of a mesoscale forecast using very-large ensembles. Preprints, 20th Conf. on Weather Analysis Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc, CD-ROM, J8.2.

  • Mass, C. F., D. Ovens, K. Westrick, and B. A. Colle, 2002: Does increasing horizontal resolution produce more skillful forecast? Bull. Amer. Meteor. Soc., 83 , 407430.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., and Coauthors, 2003: Regional environmental prediction over the Pacific Northwest. Bull. Amer. Meteor. Soc., 84 , 13531366.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., B. A. Baum, K. I. Strabala, and R. A. Frey, 1997: Cloud top properties and cloud phase algorithm theoretical basis document. NASA GSFC, 61 pp. [Available online at http://modis-atmos.gsfc.nasa.gov/_docs/atbd_mod04.pdf].

  • Menzel, W. P., S. W. Seemann, J. Li, and L. E. Gumley, 2002: MODIS atmospheric profile retrieval algorithm theoretical basis document. NASA GSFC, 35 pp. [Available online at http://modis-atmos.gsfc.nasa.gov/_docs/atbd_mod07.pdf.].

  • Mesinger, F., 1996: Improvements in quantitative precipitation forecasts with the Eta regional model at the National Centers for Environmental Prediction: The 48-km upgrade. Bull. Amer. Meteor. Soc., 77 , 26372649.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Peixoto, J. P., and A. H. Oort, 1996: The climatology of relative humidity in the atmosphere. J. Climate, 9 , 34433463.

  • Powers, J. G., A. J. Monaghan, A. M. Cayette, D. H. Bromwich, Y-H. Kuo, and K. W. Manning, 2003: Real-time mesoscale modeling over Antarctica: The Antarctic mesoscale prediction system. Bull. Amer. Meteor. Soc., 84 , 15331545.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., J. A. Coakley Jr., D. H. Lenschow, C. W. Fairall, and R. A. Kropfli, 1984: Outlook for research on subtropical marine stratification clouds. Bull. Amer. Meteor. Soc., 65 , 12901301.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124 , 10711107.

    • Search Google Scholar
    • Export Citation
  • Ruggiero, F. H., G. D. Modica, and A. E. Lipton, 2000: Assimilation of satellite imager data and surface observations to improve analysis of circulations forced by cloud shading contrasts. Mon. Wea. Rev., 128 , 434448.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., M. P. Clark, and D. H. Bromwich, 2003: Monitoring precipitation over the Arctic terrestrial drainage system: Data requirements, shortcomings and applications of atmospheric reanalysis. J. Hydrometeor., 4 , 387407.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., 1990: Sensitivity of the Earth’s radiation budget to changes in low clouds. Nature, 343 , 4951.

  • Stauffer, D. R., and N. L. Seaman, 1990: Use of four-dimensional data assimilation in a limited area mesoscale model. Part I: Experiments with synoptic-scale data. Mon. Wea. Rev., 118 , 12501277.

    • Search Google Scholar
    • Export Citation
  • Strom, J., and Coauthors, 2003: Cirrus cloud occurrence as function of ambient relative humidity: A comparison of observations obtained during the INCA experiment. Atmos. Chem. Phys., 3 , 18071816.

    • Search Google Scholar
    • Export Citation
  • Tilley, J. S., and D. H. Bromwich, 2005: Short-to-medium range numerical weather prediction in the Arctic and Antarctic. Bull. Amer. Meteor. Soc., 86 , 983988.

    • Search Google Scholar
    • Export Citation
  • Tilley, J. S., X. Fan, and J. E. Walsh, 2005: Application of a Mesoscale 3DVAR system at high latitudes as a step towards Arctic Reanalysis. Preprints, Eighth Conf. on Polar Meteorology and Oceanography, San Diego, CA, Amer. Meteor. Soc., CD-ROM, JP2.11.

  • Wang, J., and J. A. Curry, 1998: Relative humidity variations in the tropical western Pacific and relations with deep convective clouds. Proc. Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting, Tucson, AZ, ARM, 787–790.

  • Wang, J., W. B. Rossow, and Y-C. Zhang, 2000: Cloud vertical structure and its variations from a 20-year global rawinsonde dataset. J. Climate, 13 , 30413056.

    • Search Google Scholar
    • Export Citation
  • Wilks, D., 1995: Statistical. Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • Xu, K-M., and D. A. Randall, 1996: A semi-empirical cloudiness parameterization for use in climate models. J. Atmos. Sci., 53 , 30843102.

    • Search Google Scholar
    • Export Citation
  • Yi, Y., P. Minnis, J. Huang, J. K. Ayers, D. R. Doelling, M. M. Khaiyer, and M. L. Nordeen, 2004: Cloud detection using measured and modeled state parameters. Preprints, 13th Conf. on Satellite Oceanography and Meteorology, Norfolk, VA, Amer. Meteor. Soc., CD-ROM, P6.11.

  • Yucel, I., W. J. Shuttleworth, R. T. Pinker, L. Lu, and S. Sorooshian, 2002: Impact of ingesting satellite-derived cloud cover into the Regional Atmospheric Modeling System. Mon. Wea. Rev., 130 , 610628.

    • Search Google Scholar
    • Export Citation
  • Yucel, I., W. J. Shuttleworth, X. Gao, and S. Sorooshian, 2003: Short-term performance of MM5 with cloud-cover assimilation from satellite observations. Mon. Wea. Rev., 131 , 17971810.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 226 49 3
PDF Downloads 149 31 2