Modeling Linear Kinematic Features in Sea Ice

Jennifer K. Hutchings International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by Jennifer K. Hutchings in
Current site
Google Scholar
PubMed
Close
,
Petra Heil Tasmanian Partnership for Advanced Computing, University of Tasmania, Hobart, Australia

Search for other papers by Petra Heil in
Current site
Google Scholar
PubMed
Close
, and
William D. Hibler III International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by William D. Hibler III in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Sea ice deformation is localized in narrow zones of high strain rate that extend hundreds of kilometers, for example, across the Arctic Basin. This paper demonstrates that these failure zones may be modeled with a viscous–plastic sea ice model, using an isotropic rheology. If the ice is assumed to be heterogeneous at the grid scale, and allowed to weaken in time, intersecting failure zones propagate across the region. The direction of failure propagation depends upon the stress applied to the ice (wind stress and boundary conditions) and the rheological model describing plastic failure of the ice. The spacing between failure zones is controlled by the magnitude of the wind stress and the distribution describing spatial variability of ice strength. Sea ice motion and deformation oscillate at close to a 12-h period throughout the Arctic and Antarctic pack ice. This oscillation is found at all spatial scales from hundreds of kilometers to the lead scale. It is shown that with an inertial embedded model, sea ice deformation rotates between pairs of fault patterns with a semidiurnal period. It is well known that linear zones of deformation exist at many spatial scales throughout the Arctic Basin. The model presented in this paper may be scaled to simulate these features.

* Current affiliation: Australian Antarctic Division and Ace CRC, University of Tasmania, Hobart, Tasmania, Australia

Corresponding author address: Jennifer Hutchings, International Arctic Research Center, University of Alaska Fairbanks, 903 Koyukuk Dr., Fairbanks, AK 99775-7320. Email: jenny@iarc.uaf.edu

Abstract

Sea ice deformation is localized in narrow zones of high strain rate that extend hundreds of kilometers, for example, across the Arctic Basin. This paper demonstrates that these failure zones may be modeled with a viscous–plastic sea ice model, using an isotropic rheology. If the ice is assumed to be heterogeneous at the grid scale, and allowed to weaken in time, intersecting failure zones propagate across the region. The direction of failure propagation depends upon the stress applied to the ice (wind stress and boundary conditions) and the rheological model describing plastic failure of the ice. The spacing between failure zones is controlled by the magnitude of the wind stress and the distribution describing spatial variability of ice strength. Sea ice motion and deformation oscillate at close to a 12-h period throughout the Arctic and Antarctic pack ice. This oscillation is found at all spatial scales from hundreds of kilometers to the lead scale. It is shown that with an inertial embedded model, sea ice deformation rotates between pairs of fault patterns with a semidiurnal period. It is well known that linear zones of deformation exist at many spatial scales throughout the Arctic Basin. The model presented in this paper may be scaled to simulate these features.

* Current affiliation: Australian Antarctic Division and Ace CRC, University of Tasmania, Hobart, Tasmania, Australia

Corresponding author address: Jennifer Hutchings, International Arctic Research Center, University of Alaska Fairbanks, 903 Koyukuk Dr., Fairbanks, AK 99775-7320. Email: jenny@iarc.uaf.edu

Save
  • Coon, M., G. Knoke, and D. Echert, 1998: The architecture of an anisotropic sea ice mechanics constitutive law. J. Geophys. Res., 103 , 2191521925.

    • Search Google Scholar
    • Export Citation
  • Feltham, D. L., P. Sammonds, and D. Hatton, 2002: Method of determining a geophysical-scale sea ice rheology from laboratory experiments. Int. Assoc. Hydrol. Eng. Res., 3 , 9499.

    • Search Google Scholar
    • Export Citation
  • Geiger, C. A., S. F. Ackley, and W. D. Hibler III, 1998: Sea ice drift and deformation processes in the western Weddell Sea. Antarctic Sea Ice Physical Processes, Interactions and Variability, M. O. Jeffries, Ed., Antarctic Research Series, Vol. 74, Amer. Geophys. Union, 141–160.

    • Search Google Scholar
    • Export Citation
  • Heil, P., 1999: Sea-ice growth, drift and deformation off East Antarctica. Ph.D. dissertation, University of Tasmania, Australia, 243 pp.

  • Heil, P., and W. D. Hibler III, 2002: Modelling the high-frequency component of Arctic sea-ice drift and deformation. J. Phys. Oceanogr., 32 , 30293057.

    • Search Google Scholar
    • Export Citation
  • Heil, P., V. I. Lytle, and I. Allison, 1998: Enhanced thermodynamic ice growth by sea ice deformation. Ann. Glaciol., 27 , 433437.

  • Heil, P., J. K. Hutchings, and W. D. Hibler III, 2002: Modes of variability of Arctic sea-ice motion from 1948 to 2000. Int. Assoc. Hydrol. Eng. Res., 2 , 367374.

    • Search Google Scholar
    • Export Citation
  • Hibler III, W. D., 1974: Differential sea ice drift. II. Comparison of mesoscale strain measurements to linear drift theory predictions. J. Glaciol., 13 , 457471.

    • Search Google Scholar
    • Export Citation
  • Hibler III, W. D., 1979: A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9 , 815846.

  • Hibler III, W. D., 2001a: Sea ice fracturing on the large scale. Eng. Fracture Mech., 68 , 20132043.

  • Hibler III, W. D., 2001b: Modeling the formation and evolution of oriented fractures in sea ice. Ann. Glaciol., 33 , 157164.

  • Hibler III, W. D., and E. Schulson, 1997: On modeling sea-ice fracture and flow in numerical investigations of climate. Ann. Glaciol., 25 , 2632.

    • Search Google Scholar
    • Export Citation
  • Hibler III, W. D., and E. Schulson, 2000: On modeling the anisotropic failure and flow of flawed sea ice. J. Geophys. Res., 105 , 1710517120.

    • Search Google Scholar
    • Export Citation
  • Hibler III, W. D., W. F. Weeks, S. F. Ackley, A. Kovacs, and W. Campbell, 1973: Mesoscale strain measurements of the Beaufort Sea pack ice. J. Glaciol., 12 , 187206.

    • Search Google Scholar
    • Export Citation
  • Hibler III, W. D., W. F. Weeks, A. Kovacs, and S. F. Ackley, 1974: Differential sea-ice drift. I. Spatial and temporal variations in sea-ice deformation. J. Glaciol., 13 , 437455.

    • Search Google Scholar
    • Export Citation
  • Hibler III, W. D., P. Heil, and V. I. Lytle, 1998: On simulating high-frequency variability in Antarctic sea-ice dynamics models. Ann. Glaciol., 27 , 443448.

    • Search Google Scholar
    • Export Citation
  • Hopkins, M., A. Frankenstein, and A. Thorndike, 2004: Formation of an aggregate scale in Arctic sea ice. J. Geophys. Res., 109 .C01032, doi:10.1029/2003JC001855.

    • Search Google Scholar
    • Export Citation
  • Hunkins, K., 1967: Inertial oscillations of Fletcher’s ice island. J. Geophys. Res., 72 , 11651174.

  • Hutchings, J. K., and W. D. Hibler III, 2002: Modelling sea ice deformation with a viscous-plastic isotropic rheology. Int. Assoc. Hydrol. Eng. Res., 2 , 358366.

    • Search Google Scholar
    • Export Citation
  • Kowalik, Z., and A. Y. Proshutinsky, 1994: The Arctic Ocean tides. The Polar Oceans and Their Role in Shaping the Global Environment, Geophys. Monogr., Vol. 85, Amer. Geophys. Union, 137–158.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., 2001: Deformation of the Arctic Ocean sea ice cover between November 1996 and April 1997: A survey. IUTAM Scaling Laws in Ice Mechanics and Ice Dynamics, J. Dempsey, H. Shen, and L. Shapiro, Eds., Kluwer Academic, 315–322 (with color figures 301–313).

    • Search Google Scholar
    • Export Citation
  • Kwok, R., 2003: RGPS Arctic Ocean sea ice deformation from SAR ice motion: Linear kinematic features Winter 1996–1997, Winter 1997–1998, Summer 1998. Polar Remote Sensing Group, Jet Propulsion Laboratory Rep. JPL D-21524, 80 pp.

  • Kwok, R., G. F. Cunningham, and W. D. Hibler III, 2003: Sub-daily sea ice motion and deformation from RADARSAT observations. Geophys. Res. Lett., 30 .2218, doi:10.1029/2003GL018723.

    • Search Google Scholar
    • Export Citation
  • Leppäranta, M., and W. D. Hibler III, 1987: Mesoscale sea ice deformation in the east greenland marginal ice zone. J. Geophys. Res., 92 , 70607070.

    • Search Google Scholar
    • Export Citation
  • Marco, J., and R. Thomson, 1977: Rectilinear leads and internal motions in the ice pack of the western Arctic Ocean. J. Geophys. Res., 82 , 979987.

    • Search Google Scholar
    • Export Citation
  • Marsan, D., H. Stern, R. Lindsay, and J. Weiss, 2004: Scale dependence and localization of the deformation of Arctic sea ice. Phys. Res. Lett.,17, doi:10.1103/PhysRevLett93.178501.

  • McPhee, M. G., 1978: A simulation of the inertial oscillation in drifting pack ice. Dyn. Atmos. Oceans, 2 , 107122.

  • NOAA, 1988: ETOPO5 bathmetry/topography data: Digital relief of the surface of the Earth. National Geophysical Data Center Data Announcement 88-MGG-02, 1 p.

  • Overland, J. E., B. A. Walter, T. B. Curtin, and P. Turet, 1995: Hierarchy and sea ice mechanics: A case study from the Beaufort Sea. J. Geophys. Res., 100 , 45594571.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., S. L. McNutt, S. Salo, J. Groves, and S. Li, 1998: Arctic sea ice as a granular plastic. J. Geophys. Res., 103 , 2184521867.

    • Search Google Scholar
    • Export Citation
  • Pease, C. H., P. Turet, and R. S. Pritchard, 1995: Barents Sea tidal and inertial motions from Argos ice buoys during the Coordianted Eastern Arctic Experiment. J. Geophys. Res., 100 , 2470524718.

    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., A. Y. Proshutinsky, and M. A. Johnson, 1999: Seasonal cycles in two regimes of Arctic climate. J. Geophys. Res., 104 , 2574125788.

    • Search Google Scholar
    • Export Citation
  • Pritchard, R. S., 1988: Mathematical characteristics of sea ice dynamics models. J. Geophys. Res., 93 , 1560915618.

  • Richter-Menge, J. A., S. L. McNutt, J. E. Overland, and R. Kwok, 2002: Relating Arctic pack ice stress and deformation under winter conditions. J. Geophys. Res., 107 .8040, doi:10.1029/2000JC000477.

    • Search Google Scholar
    • Export Citation
  • Schulson, E. M., and W. D. Hibler III, 1991: The fracture of ice on scales large and small: Arctic leads and wing cracks. J. Glaciol., 37 , 319322.

    • Search Google Scholar
    • Export Citation
  • Schulson, E. M., and O. Y. Nickolayev, 1995: Failure of columnar saline ice under biaxial compression: Failure envelopes and the brittle-to-ductile transition. J. Geophys. Res., 100 , 2238322400.

    • Search Google Scholar
    • Export Citation
  • Steele, M., J. Zhang, D. Rothrock, and H. Stern, 1997: The force balance of sea ice in a numerical model of the Arctic Ocean. J. Geophys. Res., 102 , 2106221079.

    • Search Google Scholar
    • Export Citation
  • Stern, H. L., and R. E. Moritz, 2002: Sea ice kinematics and surface properties from RADARSAT synthetic aperture radar during the SHEBA drift. J. Geophys. Res., 107 .8028, doi:10.1029/2000JC000472.

    • Search Google Scholar
    • Export Citation
  • Thorndike, A. S., and R. Colony, 1982: Sea ice motion in response to geostrophic winds. J. Geophys. Res., 87 , 58455882.

  • Tucker, W. B., J. W. Weatherly, D. T. Eppler, L. D. Farmer, and D. L. Bentley, 2001: Evidence of rapid thinning of sea ice in the western Arctic Ocean at the end of the 1980s. Geophys. Res. Lett., 28 , 28512854.

    • Search Google Scholar
    • Export Citation
  • Walter, B. A., and J. E. Overland, 1993: The response of lead patterns in the Beaufort Sea to storm-scale wind forcing. Ann. Glaciol., 17 , 219226.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and W. D. Hibler, 1997: On an efficient numerical method for modeling sea ice dynamics. J. Geophys. Res., 102 , 86918702.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 717 306 20
PDF Downloads 402 153 10