Plant- and Soil-Parameter-Caused Uncertainty of Predicted Surface Fluxes

Nicole Mölders Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by Nicole Mölders in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Simulated surface fluxes depend on one or more empirical plant or soil parameters that have a standard deviation (std dev). Thus, simulated fluxes will have a stochastic error (or std dev) resulting from the parameters’ std dev. Gaussian error propagation (GEP) principles are used to calculate the std dev for fluxes predicted by the hydro–thermodynamic soil–vegetation scheme to identify prediction limitations due to stochastic errors, parameterization weaknesses, and critical parameters, and to prioritize which parameters to measure with higher accuracy.

Relative errors of net radiation, sensible, latent, and ground heat flux, on average, are 7%, 10%, 6%, and 26%, respectively. The analysis identified the parameterization of thermal conductivity as the dominant influence on the std dev of ground heat flux. For net radiation, critical parameters are vegetation fraction and ground emissivity; for sensible and latent heat fluxes, vegetation fraction. Minimum stomatal resistance and leaf area index dominate the std dev of stomatal resistance for most vegetation and soil types. The empirical parameters with the highest relative error are not necessarily the greatest contributors to the std dev of the predicted flux. Based on the analysis high priority should be given to measurements of vegetation fraction, ground emissivity, minimum stomatal resistance, leaf area index in general, and the permanent wilting point and field capacity for clay and clay loam. Moreover, further specification of clay-type soils and tundra-type vegetation may improve the accuracy of the lower boundary condition in Arctic numerical weather prediction. Since GEP showed itself able to identify critical parameters and (parts of) parameterizations, GEP analysis could form a basis for parameterization intercomparisons and for parameter determination aimed at improving models.

Corresponding author address: Nicole Mölders, Geophysical Institute, University of Alaska Fairbanks, 903 Koyukuk Dr., P.O. Box 757320, Fairbanks, AK 99775-7320. Email: molders@gi.alaska.edu

Abstract

Simulated surface fluxes depend on one or more empirical plant or soil parameters that have a standard deviation (std dev). Thus, simulated fluxes will have a stochastic error (or std dev) resulting from the parameters’ std dev. Gaussian error propagation (GEP) principles are used to calculate the std dev for fluxes predicted by the hydro–thermodynamic soil–vegetation scheme to identify prediction limitations due to stochastic errors, parameterization weaknesses, and critical parameters, and to prioritize which parameters to measure with higher accuracy.

Relative errors of net radiation, sensible, latent, and ground heat flux, on average, are 7%, 10%, 6%, and 26%, respectively. The analysis identified the parameterization of thermal conductivity as the dominant influence on the std dev of ground heat flux. For net radiation, critical parameters are vegetation fraction and ground emissivity; for sensible and latent heat fluxes, vegetation fraction. Minimum stomatal resistance and leaf area index dominate the std dev of stomatal resistance for most vegetation and soil types. The empirical parameters with the highest relative error are not necessarily the greatest contributors to the std dev of the predicted flux. Based on the analysis high priority should be given to measurements of vegetation fraction, ground emissivity, minimum stomatal resistance, leaf area index in general, and the permanent wilting point and field capacity for clay and clay loam. Moreover, further specification of clay-type soils and tundra-type vegetation may improve the accuracy of the lower boundary condition in Arctic numerical weather prediction. Since GEP showed itself able to identify critical parameters and (parts of) parameterizations, GEP analysis could form a basis for parameterization intercomparisons and for parameter determination aimed at improving models.

Corresponding author address: Nicole Mölders, Geophysical Institute, University of Alaska Fairbanks, 903 Koyukuk Dr., P.O. Box 757320, Fairbanks, AK 99775-7320. Email: molders@gi.alaska.edu

Save
  • Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods of Computational Physics, Vol. 17, Academic Press 174–265.

    • Search Google Scholar
    • Export Citation
  • Avissar, R., 1991: A statistical-dynamical approach to parameterize subgrid-scale land-surface heterogeneity in climate models. Surv. Geophys., 12 , 155178.

    • Search Google Scholar
    • Export Citation
  • Avissar, R., and R. A. Pielke, 1989: A parameterization of heterogeneous land surface for atmospheric numerical models and its impact on regional meteorology. Mon. Wea. Rev., 117 , 21132136.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and J. H. Ball, 1997: Albedo over the boreal forest. J. Geophys. Res., 102D , 2890128909.

  • Bonan, G. B., K. W. Oleson, M. Vertenstein, S. Levis, X. Zeng, Y. Dai, R. E. Dickinson, and Z-L. Yang, 2002: The land surface climatology of the community land model coupled to the NCAR Community Climate Model. J. Climate, 15 , 11151130.

    • Search Google Scholar
    • Export Citation
  • Calhoun, F. G., N. E. Smeck, B. L. Slater, J. M. Bigham, and G. F. Hall, 2001: Predicting bulk density of Ohio soils from morphology, genetic principles, and laboratory characterization data. Soil Sci. Soc. Amer. J., 65 , 811819.

    • Search Google Scholar
    • Export Citation
  • Charney, J., 1975: Dynamics of desert and droughts in the Sahel. Quart. J. Roy. Meteor. Soc., 101 , 193202.

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129 , 569585.

    • Search Google Scholar
    • Export Citation
  • Chen, T. H., and Coauthors, 1997: Cabauw experimental results from the Project of Intercomparison of Land Surface Schemes (PILPS). J. Climate, 10 , 11941215.

    • Search Google Scholar
    • Export Citation
  • Clapp, R. B., and G. M. Hornberger, 1978: Empirical equations for some soil hydraulic properties. Water Resour. Res., 14 , 601604.

  • Collins, D. C., and R. Avissar, 1994: An evaluation with the Fourier amplitude sensitivity test (FAST) of which land surface parameters are of greatest importance in atmospheric modeling. J. Climate, 7 , 681703.

    • Search Google Scholar
    • Export Citation
  • Cosby, B. J., G. M. Hornberger, R. B. Clapp, and T. R. Ginn, 1984: A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res., 20 , 682690.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res., 83 , 18891903.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere Atmosphere Transfer Scheme (BATS) version 1e as coupled to the NCAR Community Climate Model. NCAR Tech. Note NCAR/TN-378+STR, 72 pp.

  • Dingman, S. L., 1994: Physical Hydrology. Macmillan Publishing Company, 575 pp.

  • Dorman, J. L., and P. J. Sellers, 1989: A global climatology of albedo, roughness length, and stomatal resistance for atmospheric general circulation models as represented by the simple biosphere model (SiB). J. Appl. Meteor., 28 , 833855.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State–NCAR Mesoscale Model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121 , 14931513.

    • Search Google Scholar
    • Export Citation
  • Grell, G., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121 , 764787.

  • Grell, G., J. Dudhia, and D. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 117 pp.

  • Grunwald, S., D. J. Rooney, K. McSweeney, and B. Lowery, 2001: Development of pedotransfer functions for a profile cone penetrometer. Geoderma, 100 , 2547.

    • Search Google Scholar
    • Export Citation
  • Gutman, G., and A. Ignatov, 1998: The derivation of green vegetation from NOAA/AVHHRR data for use in numerical weather prediction models. Int. J. Remote Sens., 19 , 15331543.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and S. J. Colucci, 1997: Verification of Eta-RSM short-range ensemble forecasts. Mon. Wea. Rev., 125 , 13121327.

  • Henderson-Sellers, A., 1993: A factorial assessment of the sensitivity of the BATS land surface parameterization. J. Climate, 6 , 227247.

    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., A. J. Pitman, P. K. Love, P. Irannejad, and T. H. Chen, 1995: The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS): Phases 2 and 3. Bull. Amer. Meteor. Soc., 76 , 489503.

    • Search Google Scholar
    • Export Citation
  • Hicks, B. B., D. D. Baldocchi, T-P. Meyers, R. P. Hosker Jr., and R. P. Matt, 1987: A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities. Water Air Soil Pollut., 36 , 311330.

    • Search Google Scholar
    • Export Citation
  • Hong, S-Y., and H-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124 , 23222339.

    • Search Google Scholar
    • Export Citation
  • Jackson, R. B., J. Canadell, J. R. Ehleringer, H. A. Mooney, O. E. Sala, and E. D. Schulze, 1996: A global analysis of root distributions for terrestrial biomes. Oecologia, 108 , 389411.

    • Search Google Scholar
    • Export Citation
  • Jarvis, P. G., 1976: The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. Roy. Soc. London, 273 , 593610.

    • Search Google Scholar
    • Export Citation
  • Jin, M., and S. Liang, 2006: Improving land surface emissivity parameter of land surface models using global remote sensing observations. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Körner, C., J. A. Scheel, and H. Bauer, 1979: Maximum leaf diffusive conductance in vascular plants. Photosynhetica, 13 , 4582.

  • Kramm, G., 1995: Zum Austausch von Ozon und reaktiven Stickstoffverbindungen zwischen Atmosphäre und Biosphäre. Maraun-Verlag, 268 pp.

    • Search Google Scholar
    • Export Citation
  • Kramm, G., R. Dlugi, N. Mölders, and H. Müller, 1994: Numerical investigations of the dry deposition of reactive trace gases. Air Pollution II, Vol. 1: Computer Simulation, J. M. Baldasano et al., Eds., Computational Mechanics Publications, 285–307.

    • Search Google Scholar
    • Export Citation
  • Kramm, G., N. Beier, T. Foken, H. Müller, P. Schröder, and W. Seiler, 1996: A SVAT scheme for NO, NO2, and O3—Model description. Meteor. Atmos. Phys., 61 , 89106.

    • Search Google Scholar
    • Export Citation
  • Kreyszig, E., 1970: Statistische Methoden und ihre Anwendung. Vanden Hoeck & Ruprecht, 422 pp.

  • Luo, L., and Coauthors, 2003: Effects of frozen soil on soil temperature, spring infiltration, and runoff: Results from the PILPS 2(d) experiment at Valdai, Russia. J. Hydrometeor., 4 , 334351.

    • Search Google Scholar
    • Export Citation
  • McCumber, M., and R. A. Pielke, 1981: Simulation of the effects of surface fluxes of heat and moisture in a mesoscale numerical model 1. Soil layer. J. Geophys. Res., 86C , 99299938.

    • Search Google Scholar
    • Export Citation
  • Meyer, S. L., 1975: Data Analysis for Scientists and Engineers. J. Wiley & Sons, 513 pp.

  • Miller, D. A., and R. A. White, 1998: A conterminous United States multilayer soil characteristics dataset for regional climate and hydrological modeling. Earth Interactions, 2 .[Available online at http://EarthInteractions.org.].

    • Search Google Scholar
    • Export Citation
  • Mölders, N., 2001: On the uncertainty in mesoscale modeling caused by surface parameters. Meteor. Atmos. Phys., 76 , 119141.

  • Mölders, N., and W. Rühaak, 2002: On the impact of explicitly predicted runoff on the simulated atmospheric response to small-scale land-use changes—An integrative modeling approach. Atmos. Res., 63 , 338.

    • Search Google Scholar
    • Export Citation
  • Mölders, N., and J. E. Walsh, 2004: Atmospheric response to soil-frost and snow in Alaska in March. Theor. Appl. Climatol.,, 77 .doi:10.1007/s00704-0032-5.

    • Search Google Scholar
    • Export Citation
  • Mölders, N., U. Haferkorn, J. Döring, and G. Kramm, 2003: Long-term numerical investigations on the water budget quantities predicted by the hydro-thermodynamic soil vegetation scheme (HTSVS)—Part I: Description of the model and impact of long-wave radiation, roots, snow, and soil frost. Meteor. Atmos. Phys., 84 , 115135.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117 , 536549.

    • Search Google Scholar
    • Export Citation
  • Panin, G. N., G. Tetzlaff, and A. Raabe, 1998: Inhomogeneity of the land surface and problems in the parameterization of surface fluxes in natural conditions. Theor. Appl. Climatol., 60 , 163178.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., 1984: Mesoscale Meteorological Modelling. Academic Press, Inc., 612 pp.

  • Pollard, D., and S. L. Thompson, 1995: Use of a land-surface-transfer scheme (LSX) in a global climate model: The response to doubling stomatal resistance. Global Planet. Change, 10 , 129161.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124B , 10711107.

    • Search Google Scholar
    • Export Citation
  • Schlosser, C. A., and Coauthors, 2000: Simulations of a boreal grassland hydrology at Valdai, Russia: PILPS phase 2(d). Mon. Wea. Rev., 128 , 301321.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., Y. Mintz, Y. C. Sud, and A. Dalcher, 1986: A Simple Biosphere model (SIB) for use within general circulation models. J. Atmos. Sci., 43 , 505531.

    • Search Google Scholar
    • Export Citation
  • Shao, Y., and A. Henderson-Sellers, 1996: Modeling soil moisture: A project for intercomparison of land surface parameterization schemes phase 2 (b). J. Geophys. Res., 101D , 72277250.

    • Search Google Scholar
    • Export Citation
  • Slater, A. G., and Coauthors, 2001: The representation of snow in land surface schemes: Results from PILPS 2(d). J. Hydrometeor., 2 , 725.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at the NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74 , 23172330.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., Y. Zhu, and T. Marchok, 2001: The use of ensembles to identify forecasts with small and large uncertainty. Wea. Forecasting, 16 , 463477.

    • Search Google Scholar
    • Export Citation
  • Tracton, M. S., and E. Kalnay, 1993: Operational ensemble prediction at the National Meteorological Center: Practical aspects. Wea. Forecasting, 8 , 379398.

    • Search Google Scholar
    • Export Citation
  • Verseghy, D. L., 1991: CLASS—A Canadian land surface scheme for GCMs. 1. Soil model. Int. J. Climatol., 11 , 111133.

  • Willson, K., and Coauthors, 2002: Energy balance closure of FLUXNET sites. Agric. For. Meteor., 113 , 223243.

  • Wilson, M. F., A. Henderson-Sellers, R. E. Dickinson, and P. J. Kennedy, 1987: Sensitivity of the biosphere–atmosphere transfer scheme (BATS) to the inclusion of variable soil characteristics. J. Climate Appl. Meteor., 26 , 341362.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 189 128 80
PDF Downloads 53 24 7