• AFES Team, 2002: Model document of the spectral AGCM-AFES 1.0 (in Japanese). Earth Simulator Developing Rep., 34 pp. [Available from the Earth Simulator Center, 3173-25 Shiowa-machi, Kanazawa-ku, Yokohama, 236-0001, Japan.].

  • Allen, D. J., , A. R. Douglass, , R. B. Rood, , and P. D. Guthrie, 1991: Application of a monotonic upstream-biased transport scheme to three-dimensional constituent transport calculations. Mon. Wea. Rev., 119 , 24562464.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., , and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31 , 674701.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., , and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in Computational Physics, Vol. 17, J. Chang, Ed., Academic Press, 173–265.

    • Search Google Scholar
    • Export Citation
  • Asselin, R., 1972: Frequency filter for time integration. Mon. Wea. Rev., 100 , 487490.

  • Bott, A., 1992: Monotone flux limitation in the area-preserving flux-form advection algorithm. Mon. Wea. Rev., 120 , 25952602.

  • Carpenter, R. L., , K. K. Droegemeier, , P. R. Woodward, , and C. E. Hane, 1990: Application of the piecewise parabolic method (PPM) to meteorological modeling. Mon. Wea. Rev., 118 , 586612.

    • Search Google Scholar
    • Export Citation
  • Clappier, A., 1998: A correction method for use in multidimensional time-splitting advection algorithms: Application to two- and three-dimensional transport. Mon. Wea. Rev., 126 , 232242.

    • Search Google Scholar
    • Export Citation
  • Colella, P., , and P. R. Woodward, 1984: The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys., 54 , 174201.

    • Search Google Scholar
    • Export Citation
  • Harten, A., 1983: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys., 49 , 357393.

  • Hourdin, F., , and A. Armengaud, 1999: The use of finite-volume methods for atmospheric advection of tracer species. Part I: Test of various formulations in a general circulation model. Mon. Wea. Rev., 127 , 822837.

    • Search Google Scholar
    • Export Citation
  • Hundsdorfer, W., , and E. J. Spee, 1995: An efficient horizontal advection scheme for the modeling of global transport of constituents. Mon. Wea. Rev., 123 , 35543564.

    • Search Google Scholar
    • Export Citation
  • Le Treut, H., , and Z-X. Li, 1991: Sensitivity of an atmospheric general circulation model to prescribed SST change: Feedback effects associated with the simulation of cloud optical properties. Climate Dyn., 5 , 175187.

    • Search Google Scholar
    • Export Citation
  • Liang, X. Z., , and W-C. Wang, cited. 1996: Atmospheric ozone climatology for use in general circulation models. [Available online at http://www-pcmdi.llnl.gov/amip/AMIP2EXPDSN/OZONE/OZONE2/o3wangdoc.html.].

  • Lin, S. J., , and R. B. Rood, 1996: Multidimensional flux-form semi-Lagrangian transport scheme. Mon. Wea. Rev., 124 , 20462070.

  • Lorenz, E. N., 1960: Energy and numerical weather prediction. Tellus, 12 , 364373.

  • Louis, J., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17 , 187202.

  • McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44 , 17751800.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., , and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31 , 17911806.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., , and M. J. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120 , 9781002.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., , R. W. Higgins, , and J. R. Bates, 1995: A global multilevel atmospheric model using a vector semi-Lagrangian finite-difference scheme. Part II: Version with physics. Mon. Wea. Rev., 123 , 15231541.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., , and M. Tanaka, 1986: Matrix formulation for the transfer of solar radiation in a plane-parallel scattering atmosphere. J. Quant. Spectrosc. Radiat. Transfer, 35 , 1321.

    • Search Google Scholar
    • Export Citation
  • Navarra, A., , W. F. Stern, , and K. Miyakoda, 1994: Reduction of the Gibbs oscillation in spectral model simulations. J. Climate, 7 , 11691183.

    • Search Google Scholar
    • Export Citation
  • Numaguti, A., , S. Sugata, , M. Takahashi, , T. Nakajima, , and A. Sumi, 1997: Study on the Climate System and Mass Transport by a Climate Model. CGER's Supercomputer Monogr., No. 3, National Institute for Environmental Studies, 47 pp.

    • Search Google Scholar
    • Export Citation
  • Peng, X., , F. Xiao, , T. Yabe, , and K. Tani, 2003: Implementation of the CIP as the advection solver in the MM5. Mon. Wea. Rev., 131 , 12561271.

    • Search Google Scholar
    • Export Citation
  • Prather, M. J., 1986: Numerical advection by conservation of second order moments. J. Geophys. Res., 91 , 66716681.

  • Purnell, D. K., 1976: Solution of the advective equation by upstream interpolation with a cubic spline. Mon. Wea. Rev., 104 , 4248.

  • Ritchie, H., 1985: Application of a semi-Lagrangian integration scheme to the moisture equation in a regional forecast model. Mon. Wea. Rev., 113 , 424435.

    • Search Google Scholar
    • Export Citation
  • Ritchie, H., 1987: Semi-Lagrangian advection on a Gaussian grid. Mon. Wea. Rev., 115 , 608619.

  • Rood, R., 1987: Numerical advection algorithms and their role in atmospheric transport and chemistry models. Rev. Geophys., 25 , 71100.

    • Search Google Scholar
    • Export Citation
  • Russell, G. L., , and J. A. Lerner, 1981: A new finite-differencing scheme for the tracer transport equation. J. Appl. Meteor., 20 , 14831498.

    • Search Google Scholar
    • Export Citation
  • Staniforth, A., , and J. Côté, 1991: Semi-Lagrangian integration schemes for atmospheric models—A review. Mon. Wea. Rev., 119 , 22062223.

    • Search Google Scholar
    • Export Citation
  • Strang, G., 1968: On the construction and comparison of difference schemes. SIAM J. Numer. Anal., 5 , 506517.

  • Uno, I., , X-M. Cai, , D. G. Steyn, , and S. Emori, 1995: A simple extension of the Louis method for rough surface layer modelling. Bound.-Layer Meteor., 76 , 395409.

    • Search Google Scholar
    • Export Citation
  • van Leer, B., 1977: Toward the ultimate conservative difference scheme. IV. A new approach to numerical convection. J. Comput. Phys., 23 , 276299.

    • Search Google Scholar
    • Export Citation
  • Wiin-Nielsen, A., 1959: On the application of trajectory methods in numerical forecasting. Tellus, 11 , 180196.

  • Williamson, D. L., , and P. J. Rasch, 1989: Two-dimensional semi-Lagrangian transport with shape-preserving interpolation. Mon. Wea. Rev., 117 , 102129.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., , J. B. Drake, , J. J. Hack, , R. Jakob, , and P. N. Swarztrauber, 1992: A standard test set for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys., 102 , 211224.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., , J. G. Olson, , and B. A. Boville, 1998: A comparison of semi-Lagrangian and Eulerian tropical climate simulations. Mon. Wea. Rev., 126 , 10011012.

    • Search Google Scholar
    • Export Citation
  • Xiao, F., , T. Yabe, , X. Peng, , and H. Kobayashi, 2002: Conservative and oscillation-less atmospheric transport schemes based on rational functions. J. Geophys. Res., 107 .4609, doi:10.1029/2001JD001532.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , and P. A. Arkin, 1996: Analyses of global monthly precipitation using gauge observation, satellite estimation, and numerical model prediction. J. Climate, 9 , 840858.

    • Search Google Scholar
    • Export Citation
  • Yabe, T., , and T. Aoki, 1991: A universal solver for hyperbolic-equation by cubic-polynomial interpolation. I. One-dimensional solver. Comput. Phys. Commun., 66 , 219232.

    • Search Google Scholar
    • Export Citation
  • Yabe, T., , R. Tanaka, , T. Nakamura, , and F. Xiao, 2001: An exactly conservative semi-Lagrangian scheme (CIP-CSL) in one dimension. Mon. Wea. Rev., 129 , 332344.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 14 14 5
PDF Downloads 8 8 1

Conservative Semi-Lagrangian Transport on a Sphere and the Impact on Vapor Advection in an Atmospheric General Circulation Model

View More View Less
  • 1 Earth Simulator Center, JAMSTEC, Yokohama, Japan
  • | 2 Department of Energy Sciences, Tokyo Institute of Technology, Yokohama, Japan
  • | 3 Earth Simulator Center, JAMSTEC, Yokohama, Japan
  • | 4 NEC Informatec Systems, Ltd., Kawasaki, Japan
© Get Permissions
Restricted access

Abstract

A conservative semi-Lagrangian scheme with rational function for interpolation is implemented in spherical geometry and tested in an atmospheric general circulation model (AGCM). The new scheme, different from the conventional semi-Lagrangian method, is conservative and oscillation free. By introducing polar mixing and a time split computation of divergence, the scheme can compute advection transport correctly over the polar regions. Idealized advection tests with various velocity fields were carried out to demonstrate numerical accuracy and conservation in comparison with the spectral schemes. The impact of the advection computation on water vapor circulation in an AGCM is also investigated with numerical simulations on the Earth Simulator. Both pure advection tests and general circulation experiments show that the presented scheme is effective in improving the tracer transport property and the precipitation field in comparison with the leapfrog-spectral method.

Corresponding author address: Dr. Xindong Peng, Earth Simulator Center, 3173-25 Showamachi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan. Email: peng@es.jamstec.go.jp

Abstract

A conservative semi-Lagrangian scheme with rational function for interpolation is implemented in spherical geometry and tested in an atmospheric general circulation model (AGCM). The new scheme, different from the conventional semi-Lagrangian method, is conservative and oscillation free. By introducing polar mixing and a time split computation of divergence, the scheme can compute advection transport correctly over the polar regions. Idealized advection tests with various velocity fields were carried out to demonstrate numerical accuracy and conservation in comparison with the spectral schemes. The impact of the advection computation on water vapor circulation in an AGCM is also investigated with numerical simulations on the Earth Simulator. Both pure advection tests and general circulation experiments show that the presented scheme is effective in improving the tracer transport property and the precipitation field in comparison with the leapfrog-spectral method.

Corresponding author address: Dr. Xindong Peng, Earth Simulator Center, 3173-25 Showamachi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan. Email: peng@es.jamstec.go.jp

Save