• Alpert, J. C., , M. Kanamitsu, , P. M. Caplan, , J. G. Sela, , G. H. White, , and E. Kalnay, 1988: Mountain induced gravity wave drag parameterization in the NMC medium-range forecast model. Preprints, Eighth Conf. on Numerical Weather Prediction, Baltimore, MD, Amer. Meteor. Soc., 726–733.

  • Betts, A. K., , and C. Jakob, 2002: Evaluation of the diurnal cycle of precipitation, surface thermodynamics, and surface fluxes in the ECMWF model using LBA data. J. Geophys. Res., 107 .8045, doi:10.1029/2001JD000427.

    • Search Google Scholar
    • Export Citation
  • Butterworth, S., 1930: On the theory of filter amplifiers. Exp. Wireless Radio Eng., 7 , 536541.

  • Campana, K. A., , Y-T. Hou, , K. E. Mitchell, , S-K. Yang, , and R. Cullather, 1994: Improved diagnostic cloud parameterization in NMC’s global model. Preprints, 10th Conf. on Numerical Weather Prediction, Portland, OR, Amer. Meteor. Soc., 324–325.

  • Chou, M-D., 1992: A solar radiation model for use in climate studies. J. Atmos. Sci., 49 , 762772.

  • Davies, R., 1982: Documentation of the solar radiation parameterization in the GLAS climate model. NASA Tech. Memo. 83961, 57 pp.

  • DeWitt, D. G., , and E. K. Schneider, 1997: The earth radiation budget as simulated by the COLA GCM. COLA Rep. 35, 39 pp. [Available from COLA, 4041 Powder Mill Rd., Suite 302, Calverton, MD 20705.].

  • Dirmeyer, P. A., , and F. J. Zeng, 1999: An update to the distribution and treatment of vegetation and soil properties in SSiB. COLA Tech. Rep. 78, 25 pp. [Available from Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705.].

  • Fels, S. B., , and M. D. Schwarzkopf, 1975: The simplified exchange approximation: A new method for radiative transfer calculations. J. Atmos. Sci., 32 , 14751488.

    • Search Google Scholar
    • Export Citation
  • Figueroa, S. N., , P. Satyamurty, , and P. L. da Silva Dias, 1995: Simulations of the summer circulation over the South American region with an eta coordinate model. J. Atmos. Sci., 52 , 15731584.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., , and J. M. Wallace, 1997: The diurnal march of convective cloudiness over the Americas. Mon. Wea. Rev., 125 , 31573171.

    • Search Google Scholar
    • Export Citation
  • Grimm, A. M., , and P. L. Silva Dias, 1995: Analysis of tropical–extratropical interactions with influence functions of a barotropic model. J. Atmos. Sci., 52 , 35383555.

    • Search Google Scholar
    • Export Citation
  • Harshvardhan, and Davies, R., , D. A. Randall, , and T. G. Corsetti, 1987: A fast radiation parameterization for atmospheric circulation models. J. Geophys. Res., 92 , D1. 10091016.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., , and B. Liebmann, 1990: The intraseasonal (40–50 day) oscillation of the Australian summer monsoon. J. Atmos. Sci., 47 , 22272240.

    • Search Google Scholar
    • Export Citation
  • Hong, S-Y., , and H-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124 , 23222339.

    • Search Google Scholar
    • Export Citation
  • Jones, C., , and B. C. Weare, 1996: The role of low-level moisture convergence and ocean latent heat fluxes in the Madden and Julian oscillation: An observational analysis using ISCCP data and ECMWF analyses. J. Climate, 9 , 30863104.

    • Search Google Scholar
    • Export Citation
  • Jones, C., , and L. M. V. Carvalho, 2002: Active and break phases in the South American monsoon system. J. Climate, 15 , 905914.

  • Juang, H-M. H., , and M. Kanamitsu, 1994: The NMC nested regional spectral model. Mon. Wea. Rev., 122 , 326.

  • Juang, H-M. H., , S-Y. Hong, , and M. Kanamitsu, 1997: The NCEP regional spectral model: An update. Bull. Amer. Meteor. Soc., 78 , 21252143.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., 1989: Description of the NMC Global Data Assimilation and Forecast System. Wea. Forecasting, 4 , 335342.

  • Kanamitsu, M., and Coauthors, 1991: Recent changes implemented into the global forecast system at NMC. Wea. Forecasting, 6 , 425435.

  • Kessler, W. S., , and R. Kleeman, 2000: Rectification of the Madden–Julian oscillation into the ENSO cycle. J. Climate, 13 , 35603575.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., , J. J. Hack, , G. Bonan, , B. A. Boville, , D. L. Williamson, , and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11 , 11311149.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., , and K. M. Weickmann, 1992: Circulation anomalies associated with tropical convection during northern winter. Mon. Wea. Rev., 120 , 19001923.

    • Search Google Scholar
    • Export Citation
  • Kinter, J. L., III Coauthors, 1997: The COLA Atmosphere–Biosphere General Circulation Model. Volume 1: Formulation. COLA Tech. Rep. 51, 44 pp. [Available from COLA, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705.].

  • Kousky, V. E., , and M. T. Kayano, 1994: Principal modes of outgoing longwave radiation and 250-mb circulation for the South American sector. J. Climate, 7 , 11311143.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., , and D. Subrahmanyam, 1982: The 30–50 day mode at 850 mb during MONEX. J. Atmos. Sci., 39 , 20882095.

  • Krishnamurti, T. N., , D. N. Chakraborty, , N. Cubukcu, , L. Stefanova, , and T. S. V. Vijaya Kumar, 2003: A mechanism of the MJO based on interactions in the frequency domain. Quart. J. Roy. Meteor. Soc., 129 , 25592590.

    • Search Google Scholar
    • Export Citation
  • Lacis, A. A., , and J. E. Hansen, 1974: A parameterization for the absorption of solar radiation in the earth's atmosphere. J. Atmos. Sci., 31 , 118133.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., , and P. H. Chan, 1986: Aspects of the 40–50 day oscillation during the northern summer as inferred from outgoing longwave radiation. Mon. Wea. Rev., 114 , 13541367.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., , and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77 , 12751277.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., , G. N. Kiladis, , J. A. Marengo, , T. Ambrizzi, , and J. D. Glick, 1999: Submonthly convective variability over South America and the South Atlantic convergence zone. J. Climate, 12 , 18771891.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., , and J. T. Kiehl, 2002: MJO-related SST variations over the tropical eastern Pacific during Northern Hemisphere summer. J. Climate, 15 , 675689.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., , and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid processes. Rev. Geophys. Space Phys., 20 , 851875.

    • Search Google Scholar
    • Export Citation
  • Misra, V., 2004: An evaluation of the predictability of austral summer season precipitation over South America. J. Climate, 17 , 11611175.

    • Search Google Scholar
    • Export Citation
  • Misra, V., , and M. Kanamitsu, 2004: Anomaly nesting: A methodology to downscale seasonal climate simulations from AGCMs. J. Climate, 17 , 32493262.

    • Search Google Scholar
    • Export Citation
  • Misra, V., , P. A. Dirmeyer, , and B. P. Kirtman, 2002a: A comparative study of two land surface schemes in regional climate integrations over South America. J. Geophys. Res., 107 .8080, doi:10.1029/2001JD001284.

    • Search Google Scholar
    • Export Citation
  • Misra, V., , P. A. Dirmeyer, , B. P. Kirtman, , H-M. H. Juang, , and M. Kanamitsu, 2002b: Regional simulation of interannual variability over South America. J. Geophys. Res., 107 .8036, doi:10.1029/2001JD900216.

    • Search Google Scholar
    • Export Citation
  • Misra, V., , P. A. Dirmeyer, , and B. P. Kirtman, 2003: Dynamic downscaling of regional climate over South America. J. Climate, 16 , 103117.

    • Search Google Scholar
    • Export Citation
  • Miyakoda, K., , and J. Sirutis, 1977: Comparative integrations of global models with various parameterized processes of subgrid-scale vertical transports: Description of the parameterizations. Beitr. Phys. Atmos., 50 , 445487.

    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., , and E. J. Zipser, 1996: Mesoscale convective systems defined by their 85-GHz ice scattering signature: Size and intensity comparison over tropical oceans and continents. Mon. Wea. Rev., 124 , 24172437.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., , and M. J. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120 , 9781002.

    • Search Google Scholar
    • Export Citation
  • Murakami, M., 1979: Large-scale aspects of deep convective activity over the GATE area. Mon. Wea. Rev., 107 , 9941012.

  • Paegle, J. N., , and K. C. Mo, 1997: Alternating wet and dry conditions over South America during summer. Mon. Wea. Rev., 125 , 279291.

  • Paegle, J. N., , L. A. Byerle, , and K. C. Mo, 2000: Intraseasonal modulation of South American summer precipitation. Mon. Wea. Rev., 128 , 837850.

    • Search Google Scholar
    • Export Citation
  • Pan, H-L., , and L. Mahrt, 1987: Interaction between soil hydrology and boundary layer developments. Bound.-Layer Meteor., 38 , 185202.

  • Pan, H-L., , and W-S. Wu, 1995: Implementing a mass flux convective parameterization package for the NMC Medium-Range Forecast model. NMC Office Note 409, 40 pp. [Available from NOAA/NWS/NCEP, Environmental Modeling Center, WWB, Room 207, Washington, DC 20233.].

  • Reynolds, R. W. A., , and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., , and S. M. Halpert, 1987: The global climate for June–August 1986: Dry conditions plague parts of the Northern Hemisphere. Mon. Wea. Rev., 115 , 705720.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., 1987: Development and verification of a cloud prediction scheme for the ECMWF model. Quart. J. Roy. Meteor. Soc., 113 , 899927.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., and Coauthors, 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 12 , 325357.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., and Coauthors, 2001: Dynamical seasonal predictability of the Asian summer monsoon. Mon. Wea. Rev., 129 , 22262248.

  • Tiedtke, M., 1984: The effect of penetrative cumulus convection on the large-scale flow in a general circulation model. Beitr. Phys. Atmos., 57 , 216239.

    • Search Google Scholar
    • Export Citation
  • Velasco, I., , and J. M. Fritsch, 1987: Mesoscale convective complexes in the Americas. J. Geophys. Res., 92 , D8. 95919613.

  • Waliser, D. E., and Coauthors, 2003a: AGCM simulations of intraseasonal variability associated with the Asian summer monsoon. Climate Dyn., 21 , 423446.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., , K. M. Lau, , W. Stern, , and C. Jones, 2003b: Potential predictability of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 84 , 3350.

    • Search Google Scholar
    • Export Citation
  • Xue, Y-K., , P. J. Sellers, , J. L. Kinter, , and J. Shukla, 1991: A simplified biosphere model for global climate studies. J. Climate, 4 , 345364.

    • Search Google Scholar
    • Export Citation
  • Xue, Y-K., , F. J. Zeng, , and C. A. Schlosser, 1996: SSiB and its sensitivity to soil properties: A case study using HAPEX-Mobilhy data. Global Planet. Change, 13 , 183194.

    • Search Google Scholar
    • Export Citation
  • Yang, G-Y., , and J. Slingo, 2001: The diurnal cycle in the Tropics. Mon. Wea. Rev., 129 , 784801.

  • Zheng, Y., , D. E. Waliser, , W. F. Stern, , and C. Jones, 2004: The role of coupled sea surface temperatures in the simulation of the tropical intraseasonal oscillation. J. Climate, 17 , 41094134.

    • Search Google Scholar
    • Export Citation
  • Zhou, J., , and K-M. Lau, 1998: Does a monsoon climate exist over South America? J. Climate, 11 , 10201040.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 9 9 0
PDF Downloads 8 8 0

Simulation of the Intraseasonal Variance of the South American Summer Monsoon

View More View Less
  • 1 Center for Ocean–Land–Atmosphere Studies, Institute of Global Environment and Society, Inc., Calverton, Maryland
© Get Permissions
Restricted access

Abstract

This study reveals the inadequacy of the Center for Ocean–Land–Atmosphere Studies (COLA) atmospheric general circulation model (AGCM) and the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis to resolve the variance of the intraseasonal anomalies of outgoing longwave radiation (OLR) over the South American summer monsoon (SASM) domain and the equatorial eastern Pacific Ocean (EEPO) owing to their coarse horizontal resolution. However, when the NCEP–NCAR reanalysis is downscaled by roughly a factor of 2.5 using the Regional Spectral Model (RSM; control-A experiment), the simulation of the seasonal mean variance of intraseasonal anomalies of OLR improves significantly. But downscaling the results of the COLA AGCM (control-B experiment) by roughly a factor of 4 led to no further improvement.

Using the novel technique of anomaly nesting, which replaces the climatology of the COLA AGCM of the nested variables at the lateral boundaries of the RSM with the NCEP–NCAR reanalysis climatology (AN experiment), the simulation of the intraseasonal variance of OLR improves significantly over control-B runs. This improvement is shown to coincide with a distinct diurnal variation of the intraseasonal scales displayed in the AN integrations, which compare reasonably well with control-A integrations. A disappointing result of this study is that the generated variance of intraseasonal anomalies of OLR in the AN integrations arises from the internal variability of the model. However, it is concluded that the systematic errors of the COLA AGCM imposed on RSM from the lateral boundary conditions suppress the generation of intraseasonal variability.

Corresponding author address: Vasubandhu Misra, Center for Ocean–Land–Atmosphere Studies, Institute of Global Environment and Society, Inc., 4041 Powder Mill Road, Suite 302, Calverton, MD 20705. Email: misra@cola.iges.org

Abstract

This study reveals the inadequacy of the Center for Ocean–Land–Atmosphere Studies (COLA) atmospheric general circulation model (AGCM) and the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis to resolve the variance of the intraseasonal anomalies of outgoing longwave radiation (OLR) over the South American summer monsoon (SASM) domain and the equatorial eastern Pacific Ocean (EEPO) owing to their coarse horizontal resolution. However, when the NCEP–NCAR reanalysis is downscaled by roughly a factor of 2.5 using the Regional Spectral Model (RSM; control-A experiment), the simulation of the seasonal mean variance of intraseasonal anomalies of OLR improves significantly. But downscaling the results of the COLA AGCM (control-B experiment) by roughly a factor of 4 led to no further improvement.

Using the novel technique of anomaly nesting, which replaces the climatology of the COLA AGCM of the nested variables at the lateral boundaries of the RSM with the NCEP–NCAR reanalysis climatology (AN experiment), the simulation of the intraseasonal variance of OLR improves significantly over control-B runs. This improvement is shown to coincide with a distinct diurnal variation of the intraseasonal scales displayed in the AN integrations, which compare reasonably well with control-A integrations. A disappointing result of this study is that the generated variance of intraseasonal anomalies of OLR in the AN integrations arises from the internal variability of the model. However, it is concluded that the systematic errors of the COLA AGCM imposed on RSM from the lateral boundary conditions suppress the generation of intraseasonal variability.

Corresponding author address: Vasubandhu Misra, Center for Ocean–Land–Atmosphere Studies, Institute of Global Environment and Society, Inc., 4041 Powder Mill Road, Suite 302, Calverton, MD 20705. Email: misra@cola.iges.org

Save