Diagnosis of Frontal Instabilities over the Southern Ocean

Jérôme Patoux Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Jérôme Patoux in
Current site
Google Scholar
PubMed
Close
,
Gregory J. Hakim Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Gregory J. Hakim in
Current site
Google Scholar
PubMed
Close
, and
Robert A. Brown Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Robert A. Brown in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The development of three fronts over the Southern Ocean is described using SeaWinds-on-QuikSCAT scatterometer surface winds and an attribution technique to partition the wind field in three components: nondivergent and irrotational components at the scale of the front, and the remaining harmonic component (or environmental flow) induced by the synoptic-scale flow. The front and the environment in which the front is embedded are analyzed separately.

A frontal wave is shown to develop out of the first front when the large-scale alongfront stretching decreases, the environmental flow becomes frontolytic, and a connection with the upper levels is established. In the second case, the stretching remains relatively strong and no frontal wave develops. The third front exhibits a developing wave but is not in a favorable configuration with the upper levels; the frontal wave does not deepen significantly.

Corresponding author address: Jérôme Patoux, Department of Atmospheric Sciences, University of Washington, 408 ATG Building, Box 351640, Seattle, WA 98195-1640. Email: jerome@atmos.washington.edu

Abstract

The development of three fronts over the Southern Ocean is described using SeaWinds-on-QuikSCAT scatterometer surface winds and an attribution technique to partition the wind field in three components: nondivergent and irrotational components at the scale of the front, and the remaining harmonic component (or environmental flow) induced by the synoptic-scale flow. The front and the environment in which the front is embedded are analyzed separately.

A frontal wave is shown to develop out of the first front when the large-scale alongfront stretching decreases, the environmental flow becomes frontolytic, and a connection with the upper levels is established. In the second case, the stretching remains relatively strong and no frontal wave develops. The third front exhibits a developing wave but is not in a favorable configuration with the upper levels; the frontal wave does not deepen significantly.

Corresponding author address: Jérôme Patoux, Department of Atmospheric Sciences, University of Washington, 408 ATG Building, Box 351640, Seattle, WA 98195-1640. Email: jerome@atmos.washington.edu

Save
  • Atlas, R., S. Bloom, R. N. Hoffman, E. Brin, J. Ardizzone, J. Terry, D. Bungato, and J. C. Jusem, 1999: Geophysical validation of NSCAT winds using atmospheric data and analyses. J. Geophys. Res., 104 , C5,. 1140511424.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., 1996a: Domain independent attribution. Part I: Reconstructing the wind from estimates of vorticity and divergence using free space Green’s functions. J. Atmos. Sci., 53 , 241252.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., 1996b: Domain independent attribution. II: Its value in the verification of dynamical theories of frontal waves and frontogenesis. J. Atmos. Sci., 53 , 253262.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and A. J. Thorpe, 1994: Frontal wave stability during moist deformation frontogenesis. Part II: The suppression of nonlinear wave development. J. Atmos. Sci., 51 , 874888.

    • Search Google Scholar
    • Export Citation
  • Bouniol, D., A. Protat, and Y. Lemaître, 1999: Mesoscale dynamics of a deepening secondary cyclone in FASTEX IOP16: Three-dimensional structure retrieved from dropsonde data. Quart. J. Roy. Meteor. Soc., 125 , 35353562.

    • Search Google Scholar
    • Export Citation
  • Bouniol, D., Y. Lemaître, and A. Protat, 2002: Upper- and lower-troposphere coupling processes involved in the FASTEX IOP16 frontal cyclone. Quart. J. Roy. Meteor. Soc., 128 , 12111228.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., and G. Levy, 1986: Ocean surface pressure fields from satellite sensed winds. Mon. Wea. Rev., 114 , 21972206.

  • Brown, R. A., and L. Zeng, 1994: Estimating central pressures of oceanic midlatitude cyclones. J. Appl. Meteor., 33 , 10881095.

  • Charney, J. G., and M. E. Stern, 1962: On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci., 19 , 159172.

    • Search Google Scholar
    • Export Citation
  • Conaty, A. L., J. C. Jusem, L. Takacs, D. Keyser, and R. Atlas, 2001: The structure and evolution of extratropical cyclones, fronts, jet streams, and the tropopause in the GEOS general circulation model. Bull. Amer. Meteor. Soc., 82 , 18531867.

    • Search Google Scholar
    • Export Citation
  • Evans, M. S., D. Keyser, L. F. Bosart, and G. M. Lackmann, 1994: A satellite-derived classification scheme for rapid maritime cyclogenesis. Mon. Wea. Rev., 122 , 13811416.

    • Search Google Scholar
    • Export Citation
  • Hilburn, K. A., M. A. Bourassa, and J. O’Brien, 2003: Development of scatterometer-derived research-quality surface pressures for the Southern Ocean. J. Geophys. Res., 108 , 3751.

    • Search Google Scholar
    • Export Citation
  • Joly, A., 1995: The stability of steady fronts and the adjoint method: Non-modal frontal waves. J. Atmos. Sci., 52 , 30823108.

  • Joly, A., and A. J. Thorpe, 1990: Frontal instability generated by tropospheric potential vorticity anomalies. Quart. J. Roy. Meteor. Soc., 116 , 525560.

    • Search Google Scholar
    • Export Citation
  • Joly, A., and A. J. Thorpe, 1991: The stability of time-dependent flows: An application to fronts in developing baroclinic waves. J. Atmos. Sci., 48 , 163182.

    • Search Google Scholar
    • Export Citation
  • Joly, A., and Coauthors, 1997: Definition of the Fronts and Atlantic Storm-Track Experiment (FASTEX). Bull. Amer. Meteor. Soc., 78 , 19171940.

    • Search Google Scholar
    • Export Citation
  • Keyser, D., and M. J. Pecnick, 1985: A two-dimensional primitive equation model of frontogenesis forced by confluence and horizontal shear. J. Atmos. Sci., 42 , 12591282.

    • Search Google Scholar
    • Export Citation
  • Keyser, D., M. J. Reeder, and R. J. Reed, 1988: A generalization of Petterssen’s function and its relation to the forcing of vertical motion. Mon. Wea. Rev., 116 , 762780.

    • Search Google Scholar
    • Export Citation
  • Kidder, S. Q., and T. H. Vonder Haar, 1995: Satellite Meteorology: An Introduction. Academic Press, 466 pp.

  • Levy, G., 1989: Surface dynamics of observed maritime fronts. J. Atmos. Sci., 46 , 12191232.

  • Levy, G., 1994: Southern Hemisphere low level wind circulation statistics from the Seasat scatterometer. Ann. Geophys., 12 , 6579.

  • Levy, G., and R. A. Brown, 1991: Southern Hemisphere synoptic weather from a satellite scatterometer. Mon. Wea. Rev., 119 , 28032813.

  • Liu, W. T., 2002: Progress in scatterometer application. J. Oceanogr., 58 , 121136.

  • Lynch, P., 1989: Partitioning the wind in a limited domain. Mon. Wea. Rev., 117 , 14921500.

  • Malardel, S., A. Joly, F. Courbet, and P. Courtier, 1993: Nonlinear evolution of ordinary frontal waves induced by low-level potential vorticity anomalies. Quart. J. Roy. Meteor. Soc., 119 , 681713.

    • Search Google Scholar
    • Export Citation
  • Mallet, I., P. Arbogast, C. Baehr, J-P. Cammas, and P. Mascart, 1999: Effects of a low-level precursor and frontal stability on cyclogenesis during FASTEX IOP17. Quart. J. Roy. Meteor. Soc., 125 , 34153437.

    • Search Google Scholar
    • Export Citation
  • McMurdie, L. A., and K. B. Katsaros, 1991: Satellite-derived integrated water-vapor distribution in oceanic midlatitude storms: Variation with region and season. Mon. Wea. Rev., 119 , 589605.

    • Search Google Scholar
    • Export Citation
  • Milliff, R. F., T. J. Hoar, and H. van Loon, 1999: Quasi-stationary wave variability in NSCAT winds. J. Geophys. Res., 104 , 1142511435.

    • Search Google Scholar
    • Export Citation
  • Parker, D. J., 1998: Secondary frontal waves in the North Atlantic region: A dynamical perspective of current ideas. Quart. J. Roy. Meteor. Soc., 124 , 829856.

    • Search Google Scholar
    • Export Citation
  • Patoux, J., 2003: Frontal wave development over the Southern Ocean Ph.D. thesis, University of Washington, 115 pp.

  • Patoux, J., and R. A. Brown, 2002: A gradient wind correction for surface pressure fields retrieved from scatterometer winds. J. Appl. Meteor., 41 , 133143.

    • Search Google Scholar
    • Export Citation
  • Patoux, J., R. C. Foster, and R. A. Brown, 2003: Global pressure fields from scatterometer winds. J. Appl. Meteor., 42 , 813826.

  • Renfrew, I. A., A. J. Thorpe, and C. H. Bishop, 1997: The role of environmental flow in the development of secondary frontal cyclones. Quart. J. Roy. Meteor. Soc., 123 , 16531675.

    • Search Google Scholar
    • Export Citation
  • Rivals, H., J-P. Camas, and I. A. Renfrew, 1998: Secondary cyclogenesis: The initiation phase of a frontal wave observed over the eastern Atlantic. Quart. J. Roy. Meteor. Soc., 124 , 243267.

    • Search Google Scholar
    • Export Citation
  • Schär, C., and H. C. Davies, 1990: An instability of mature cold fronts. J. Atmos. Sci., 47 , 929950.

  • Thorncroft, C. D., and B. J. Hoskins, 1990: Frontal cyclogenesis. J. Atmos. Sci., 47 , 23172336.

  • Wentz, F. J., and D. K. Smith, 1998: Rain effect on NSCAT sigma-0 measurements. NSCAT Science Team Meeting Report, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA.

  • Yeh, H-C., G-J. Chen, and W. Liu, 2002: Kinematic characteristics of a mei-yu front detected by the QuikSCAT oceanic winds. Mon. Wea. Rev., 130 , 700711.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., D. J. Martinson, and W. T. Liu, 1999: The effect of air–sea interaction on winter 1996 Southern Ocean subpolar storm distribution. J. Geophys. Res., 104 , 19912007.

    • Search Google Scholar
    • Export Citation
  • Zierden, D. F., M. A. Bourassa, and J. J. O’Brien, 2000: Cyclone surface pressure fields and frontogenesis from NASA scatterometer (NSCAT) winds. J. Geophys. Res., 105 , 2396723981.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 467 336 119
PDF Downloads 123 40 1