CIRA/CSU Four-Dimensional Variational Data Assimilation System

Milija Zupanski Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Milija Zupanski in
Current site
Google Scholar
PubMed
Close
,
Dusanka Zupanski Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Dusanka Zupanski in
Current site
Google Scholar
PubMed
Close
,
Tomislava Vukicevic Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Tomislava Vukicevic in
Current site
Google Scholar
PubMed
Close
,
Kenneth Eis Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Kenneth Eis in
Current site
Google Scholar
PubMed
Close
, and
Thomas Vonder Haar Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Thomas Vonder Haar in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

A new four-dimensional variational data assimilation (4DVAR) system is developed at the Cooperative Institute for Research in the Atmosphere (CIRA)/Colorado State University (CSU). The system is also called the Regional Atmospheric Modeling Data Assimilation System (RAMDAS). In its present form, the 4DVAR system is employing the CSU/Regional Atmospheric Modeling System (RAMS) nonhydrostatic primitive equation model. The Weather Research and Forecasting (WRF) observation operator is used to access the observations, adopted from the WRF three-dimensional variational data assimilation (3DVAR) algorithm. In addition to the initial conditions adjustment, the RAMDAS includes the adjustment of model error (bias) and lateral boundary conditions through an augmented control variable definition. Also, the control variable is defined in terms of the velocity potential and streamfunction instead of the horizontal winds. The RAMDAS is developed after the National Centers for Environmental Prediction (NCEP) Eta 4DVAR system, however with added improvements addressing its use in a research environment.

Preliminary results with RAMDAS are presented, focusing on the minimization performance and the impact of vertical correlations in error covariance modeling. A three-dimensional formulation of the background error correlation is introduced and evaluated. The Hessian preconditioning is revisited, and an alternate algebraic formulation is presented. The results indicate a robust minimization performance.

Corresponding author address: Milija Zupanski, Cooperative Institute for Research in the Atmosphere, Colorado State University, Foothills Campus, Fort Collins, CO 80523-1375. Email: ZupanskiM@CIRA.colostate.edu

Abstract

A new four-dimensional variational data assimilation (4DVAR) system is developed at the Cooperative Institute for Research in the Atmosphere (CIRA)/Colorado State University (CSU). The system is also called the Regional Atmospheric Modeling Data Assimilation System (RAMDAS). In its present form, the 4DVAR system is employing the CSU/Regional Atmospheric Modeling System (RAMS) nonhydrostatic primitive equation model. The Weather Research and Forecasting (WRF) observation operator is used to access the observations, adopted from the WRF three-dimensional variational data assimilation (3DVAR) algorithm. In addition to the initial conditions adjustment, the RAMDAS includes the adjustment of model error (bias) and lateral boundary conditions through an augmented control variable definition. Also, the control variable is defined in terms of the velocity potential and streamfunction instead of the horizontal winds. The RAMDAS is developed after the National Centers for Environmental Prediction (NCEP) Eta 4DVAR system, however with added improvements addressing its use in a research environment.

Preliminary results with RAMDAS are presented, focusing on the minimization performance and the impact of vertical correlations in error covariance modeling. A three-dimensional formulation of the background error correlation is introduced and evaluated. The Hessian preconditioning is revisited, and an alternate algebraic formulation is presented. The results indicate a robust minimization performance.

Corresponding author address: Milija Zupanski, Cooperative Institute for Research in the Atmosphere, Colorado State University, Foothills Campus, Fort Collins, CO 80523-1375. Email: ZupanskiM@CIRA.colostate.edu

Save
  • Axelsson, O., and V. A. Barker, 1984: Finite-Element Solution of Boundary-Value. Problems: Theory and Computation. Academic Press, 432 pp.

    • Search Google Scholar
    • Export Citation
  • Barker, D. M., W. Huang, Y-R. Guo, and Q. N. Xiao, 2004: A three-dimensional (3DVAR) data assimilation system for use with MM5: Implementation and initial results. Mon. Wea. Rev., 132 , 889–914.

    • Search Google Scholar
    • Export Citation
  • Bennett, B. S., S. Chua, and L. M. Leslie, 1996: Generalized inversion of a global numerical weather prediction model. Meteor. Atmos. Phys., 60 , 165–178.

    • Search Google Scholar
    • Export Citation
  • Cohn, S. E., A. da Silva, J. Guo, M. Sienkiewicz, and D. Lamich, 1998: Assessing the effects of data selection with the DAO physical-space statistical analysis system. Mon. Wea. Rev., 126 , 2913–2926.

    • Search Google Scholar
    • Export Citation
  • Courtier, P., J-N. Thepaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var using an incremental approach. Quart. J. Roy. Meteor. Soc., 120 , 1367–1387.

    • Search Google Scholar
    • Export Citation
  • Courtier, P., and Coauthors, 1998: The ECMWF implementation of three-dimensional variational assimilation (3D-Var). I: Formulation. Quart. J. Roy. Meteor. Soc., 124 , 1783–1808.

    • Search Google Scholar
    • Export Citation
  • Daley, R., and E. Barker, 2001: NAVDAS: Formulation and diagnostics. Mon. Wea. Rev., 129 , 869–883.

  • Dee, D. P., and A. da Silva, 1999: Maximum-likelihood estimation of forecast and observation error covariance parameters. Part I: Methodology. Mon. Wea. Rev., 127 , 1822–1834.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., G. Gaspari, C. Redder, L. Rukhovets, and A. da Silva, 1999: Maximum- likelihood estimation of forecast and observation error covariance parameters. Part II: Applications. Mon. Wea. Rev., 127 , 1835–1849.

    • Search Google Scholar
    • Export Citation
  • Derber, J. C., and W-S. Wu, 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev., 126 , 2287–2302.

    • Search Google Scholar
    • Export Citation
  • Errico, R., T. Vukicevic, and K. Raeder, 1993: Comparison of initial and lateral boundary condition sensitivity for a limited-area model. Tellus, 45A , 539–557.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125 , 723–757.

    • Search Google Scholar
    • Export Citation
  • Gauthier, P., and J-N. Thepaut, 2001: Impact of the digital filter as a weak constraint in the preoperational 4DVAR assimilation system of Météo-France. Mon. Wea. Rev., 129 , 2089–2102.

    • Search Google Scholar
    • Export Citation
  • Giering, R., and T. Kaminski, 1998: Recipes for adjoint code construction. Assoc. Comput. Mach. Trans. Math. Software, 24 , 437–474.

    • Search Google Scholar
    • Export Citation
  • Golub, G. H., and C. F. van Loan, 1989: Matrix Computations. 2d ed. John Hopkins University Press, 642 pp.

  • Guo, Y-R., Y-H. Kuo, J. Dudhia, D. Parsons, and C. Rocken, 2000: Four-dimensional variational data assimilation of heterogeneous mesoscale observations for a strong convective case. Mon. Wea. Rev., 128 , 619–643.

    • Search Google Scholar
    • Export Citation
  • Gustafsson, N., P. Lonnberg, and J. Pailleux, 1997: Data assimilation for high-resolution limited-area models. J. Meteor. Soc. Japan, 75 , 367–382.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., 1997: The effects of radiation and microphysical processes on simulated warm and transition season Arctic stratus. Ph.D. dissertation, Colorado State University, 289 pp. [Available from Colorado State University, Dept. of Atmospheric Science, Fort Collins, CO 80523.].

  • Holton, J. R., 1979: An Introduction to Dynamic Meteorology. Academic Press, 391 pp.

  • Horn, R. A., and C. R. Johnson, 1985: Matrix Analysis. Cambridge University Press, 575 pp.

  • Huang, X-Y., and P. Lynch, 1993: Diabatic digital-filtering initialization: Application to the HIRLAM model. Mon. Wea. Rev., 121 , 589–603.

    • Search Google Scholar
    • Export Citation
  • LeDimet, F. X., and O. Talagrand, 1986: Variational algorithm for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus, 38A , 97–110.

    • Search Google Scholar
    • Export Citation
  • Lewis, J. M., and J. C. Derber, 1985: The use of adjoint equations to solve a variational adjustment problem with advective constraints. Tellus, 37A , 309–322.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., and Coauthors, 2000: The Met. Office global three-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 126 , 2991–3012.

    • Search Google Scholar
    • Export Citation
  • Luenberger, D. L., 1984: Linear and Non-linear Programming. 2d ed. Addison-Wesley, 491 pp.

  • Meyers, M. P., R. L. Walko, J. Y. Harrington, and W. R. Cotton, 1997: New RAMS cloud microphysics parameterization. Atmos. Res., 45 , 3–39.

    • Search Google Scholar
    • Export Citation
  • Navon, I. M., X. Zou, J. Derber, and J. Sela, 1992: Variational data assimilation with an adiabatic version of the NMC spectral model. Mon. Wea. Rev., 120 , 1433–1446.

    • Search Google Scholar
    • Export Citation
  • Nicholls, M. E., R. A. Pielke, J. L. Eastman, C. A. Finley, W. A. Lyons, C. I. Tremback, R. L. Walko, and W. R. Cotton, 1995: Applications of the RAMS numerical model to dispersion over urban areas. Wind Climate in Cities, J. E. Cermak et al., Eds., Kluwer Academic, 703–732.

    • Search Google Scholar
    • Export Citation
  • Nocedal, J., 1980: Updating quasi-Newton matrices with limited storage. Math. Comput., 35 , 773–782.

  • Oliver, D., 1995: Moving averages for Gaussian simulation in two and three dimensions. Math. Geol., 27 , 939–960.

  • Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s Spectral Statistical Interpolation Analysis System. Mon. Wea. Rev., 120 , 1747–1763.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., and Coauthors, 1992: A comprehensive meteorological modeling system—RAMS. Meteor. Atmos. Phys., 49 , 69–91.

  • Puri, K., and G. A. Mills, 1997: Initial state specification for mesoscale applications. J. Meteor. Soc. Japan, 75 , 395–413.

  • Purser, R. J., W-S. Wu, D. F. Parrish, and N. M. Roberts, 2003: Numerical aspects of the application of recursive filters to variational statistical analysis. Part I: Spatially homogeneous and isotropic Gaussian covariances. Mon. Wea. Rev., 131 , 1524–1535.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., and T. McNally, 1993: Evaluation of forecast error covariance matrix. ECMWF Tech. Memo. 195, 36 pp.

  • Rabier, F., H. Jarvinen, E. Klinker, J-F. Mahfouf, and A. Simmons, 2000: The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Quart. J. Roy. Meteor. Soc., 126A , 1143–1170.

    • Search Google Scholar
    • Export Citation
  • Roberts, R. A., and C. T. Mullis, 1987: Digital Signal Processing. Addison-Wesley, 578 pp.

  • Shanno, D. F., 1985: Globally convergent conjugate gradient algorithms. Math. Programm., 33 , 61–67.

  • Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54 , 1642–1661.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and N. A. Crook, 1998: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci., 55 , 835–852.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., and W. R. Cotton, 1982: The Colorado State University three-dimensional cloud/mesoscale model—Part I: General theoretical framework and sensitivity experiments. Rech. Atmos., 16 , 185–219.

    • Search Google Scholar
    • Export Citation
  • Vukicevic, T., T. Greenwald, M. Zupanski, D. Zupanski, T. Vonder Haar, and A. S. Jones, 2004: Mesoscale cloud state estimation from visible and infrared satellite radiance. Mon. Wea. Rev, 132 , 3066–3077.

    • Search Google Scholar
    • Export Citation
  • Walko, R., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, 1995: New RAMS cloud microphysics parameterization. Part I: The single-moment scheme. Atmos. Res., 38 , 29–62.

    • Search Google Scholar
    • Export Citation
  • Wahba, G., D. R. Johnson, F. Gao, and J. Gong, 1995: Adaptive tuning of numerical weather prediction models: Randomized GCV in three- and four-dimensional data assimilation. Mon. Wea. Rev., 123 , 3358–3369.

    • Search Google Scholar
    • Export Citation
  • Wee, T-K., and Y-H. Kuo, 2004: Impact of digital filter as a weak constraint in MM5 4DVAR: An observing system simulation experiment. Mon. Wea. Rev., 132 , 543–559.

    • Search Google Scholar
    • Export Citation
  • Xie, Y., C. Lu, and G. L. Browning, 2002: Impact of formulation of cost function and constraints on three-dimensional variational data assimilation. Mon. Wea. Rev., 130 , 2433–2447.

    • Search Google Scholar
    • Export Citation
  • Zou, X., and Y-H. Kuo, 1996: Rainfall assimilation through an optimal control of initial and boundary conditions in a limited-area mesoscale model. Mon. Wea. Rev., 124 , 2859–2882.

    • Search Google Scholar
    • Export Citation
  • Zou, X., and Q. Xiao, 2000: Studies on the initialization and simulation of a mature hurricane using a variational bogus data assimilation scheme. J. Atmos. Sci., 57 , 836–860.

    • Search Google Scholar
    • Export Citation
  • Zou, X., Y-H. Kuo, and Y-R. Guo, 1995: Assimilation of atmospheric radio refractivity using a nonhydrostatic adjoint model. Mon. Wea. Rev., 123 , 2229–2249.

    • Search Google Scholar
    • Export Citation
  • Zou, X., H. Liu, J. Derber, J. G. Sela, R. Treadon, I. M. Navon, and B. Wang, 2001: Four-dimensional variational data assimilation with a diabatic version of the NCEP global spectral model: System development and preliminary results. Quart. J. Roy. Meteor. Soc., 127 , 1095–1122.

    • Search Google Scholar
    • Export Citation
  • Zupanski, D., 1997: A general weak constraint applicable to operational 4DVAR data assimilation systems. Mon. Wea. Rev., 125 , 2274–2292.

    • Search Google Scholar
    • Export Citation
  • Zupanski, D., M. Zupanski, E. Rogers, D. Parrish, and G. DiMego, 2002: Fine resolution 4DVAR data assimilation for the Great Plains Tornado Outbreak. Wea. Forecasting, 17 , 506–525.

    • Search Google Scholar
    • Export Citation
  • Zupanski, M., 1993a: Regional four-dimensional variational data assimilation in a quasi-operational forecasting environment. Mon. Wea. Rev., 121 , 2396–2408.

    • Search Google Scholar
    • Export Citation
  • Zupanski, M., 1993b: A preconditioning algorithm for large-scale minimization problems. Tellus, 45A , 578–592.

  • Zupanski, M., 1996: A preconditioning algorithm for four-dimensional variational data assimilation. Mon. Wea. Rev., 124 , 2562–2573.

    • Search Google Scholar
    • Export Citation
  • Zupanski, M., D. Zupanski, D. Parrish, E. Rogers, and G. DiMego, 2002: Four-dimensional variational data assimilation for the Blizzard of 2000. Mon. Wea. Rev., 130 , 1967–1988.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 364 149 23
PDF Downloads 132 45 1