Abstract
This study examines the radar-indicated structures and other features of extreme rain events in the United States over a 3-yr period. A rainfall event is defined as “extreme” when the 24-h precipitation total at one or more stations surpasses the 50-yr recurrence interval amount for that location. This definition yields 116 such cases from 1999 to 2001 in the area east of the Rocky Mountains, excluding Florida. Two-kilometer national composite radar reflectivity data are then used to examine the structure and evolution of each extreme rain event. Sixty-five percent of the total number of events are associated with mesoscale convective systems (MCSs). While a wide variety of organizational structures (as indicated by radar reflectivity data) are seen among the MCS cases, two patterns of organization are observed most frequently. The first type has a line, often oriented east–west, with “training” convective elements. It also has a region of adjoining stratiform rain that is displaced to the north of the line. The second type has a back-building or quasi-stationary area of convection that produces a region of stratiform rain downstream. Surface observations and composite analysis of Rapid Update Cycle Version 2 (RUC-2) model data reveal that training line/adjoining stratiform (TL/AS) systems typically form in a very moist, unstable environment on the cool side of a preexisting slow-moving surface boundary. On the other hand, back-building/quasi-stationary (BB) MCSs are more dependent on mesoscale and storm-scale processes, particularly lifting provided by storm-generated cold pools, than on preexisting synoptic boundaries.
Corresponding author address: Russ Schumacher, Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523. Email: rschumac@atmos.colostate.edu