Abstract
A discontinuous Galerkin shallow water model on the cubed sphere is developed, thereby extending the transport scheme developed by Nair et al. The continuous flux form nonlinear shallow water equations in curvilinear coordinates are employed. The spatial discretization employs a modal basis set consisting of Legendre polynomials. Fluxes along the element boundaries (internal interfaces) are approximated by a Lax–Friedrichs scheme. A third-order total variation diminishing Runge–Kutta scheme is applied for time integration, without any filter or limiter. Numerical results are reported for the standard shallow water test suite. The numerical solutions are very accurate, there are no spurious oscillations in test case 5, and the model conserves mass to machine precision. Although the scheme does not formally conserve global invariants such as total energy and potential enstrophy, conservation of these quantities is better preserved than in existing finite-volume models.
Corresponding author address: Ramachandran D. Nair, Scientific Computing Division, National Center for Atmospheric Research, 1850 Table Mesa Drive, Boulder, CO 80305. Email: rnair@ucar.edu