• AchutaRao, K., , and K. R. Sperber, 2002: Simulation of the El Nino Southern Oscillation: Results from the Coupled Model Intercomparison Project. Climate Dyn., 19 , 191209.

    • Search Google Scholar
    • Export Citation
  • Anderson, D. L. T., , and J. P. McCreary, 1985: Slowly propagating disturbances in a coupled atmosphere–ocean model. J. Atmos. Sci., 42 , 615625.

    • Search Google Scholar
    • Export Citation
  • Bacher, A., , J. M. Oberhuber, , and E. Roeckner, 1998: ENSO dynamics and seasonal cycle in the tropical Pacific as simulated by the ECHAM4/OPYC3 coupled general circulation model. Climate Dyn., 14 , 431450.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., , M. Latif, , N. Graham, , M. Flügel, , S. Pazan, , and W. White, 1993: ENSO and ENSO-related predictability. Part I: Prediction of equatorial Pacific sea surface temperature with a hybrid coupled ocean–atmosphere model. J. Climate, 6 , 15451566.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., , M. Chelliah, , and S. B. Goldenberg, 1997: Documentation of a highly ENSO-related SST region in the equatorial Pacific. Atmos.–Ocean, 35 , 367383.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., 1988: Dynamics and thermodynamics of a warming event in a coupled tropical atmosphere–ocean model. J. Atmos. Sci., 45 , 28892919.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., , and A. C. Hirst, 1989: Interannual variability in a tropical atmosphere–ocean model: Influence of the basic state, ocean geometry, and nonlinearity. J. Atmos. Sci., 46 , 16871712.

    • Search Google Scholar
    • Export Citation
  • Collins, M., 2000: The El Niño–Southern Oscillation in the second Hadley Center coupled model and its response to greenhouse warming. J. Climate, 13 , 12991312.

    • Search Google Scholar
    • Export Citation
  • Delecluse, P., , M. K. Davey, , Y. Kitamura, , S. G. H. Philander, , M. Suarez, , and L. Bengtsson, 1998: Coupled general circulation modeling of the tropical Pacific. J. Geophys. Res., 103 , 1435714373.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., , and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20 , 150155.

  • Griffies, S. M., , A. Gnanadesikan, , R. C. Pacanaowski, , V. Larichev, , J. K. Dukowicz, , and R. D. Smith, 1998: Isoneutral diffusion in a z-coordinate ocean model. J. Phys. Oceanogr., 28 , 805830.

    • Search Google Scholar
    • Export Citation
  • Harrison, M. J., , S. Rosati, , B. J. Soden, , E. Galanti, , and E. Tziperman, 2002: An evaluation of air–sea flux products for ENSO simulation and prediction. Mon. Wea. Rev., 130 , 723732.

    • Search Google Scholar
    • Export Citation
  • Hasegawa, T., , and K. Hanawa, 2003: Heat content variability related to ENSO events in the Pacific. J. Phys. Oceanogr., 33 , 407421.

  • Hong, S-Y., , and H-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124 , 23222339.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., , and H-L. Pan, 1998: Convective trigger function for a mass-flux cumulus parameterization scheme. Mon. Wea. Rev., 126 , 25992620.

    • Search Google Scholar
    • Export Citation
  • Hou, Y-T., , K. A. Campana, , and S-K. Yang, 1997: Shortwave radiation calculations in the NCEP’s global model. IRS’96: Current Problems in Atmospheric Radiation, W. L. Smith and K. Stamnes, Eds., Deepak Publishing, 317–319.

  • Ji, M., , A. Kumar, , and A. Leetmaa, 1994: A multiseason climate forecast system at the National Meteorological Center. Bull. Amer. Meteor. Soc., 75 , 569577.

    • Search Google Scholar
    • Export Citation
  • Jin, F. F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54 , 811829.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kanamitsu, M., , W. Ebisuzaki, , J. Woollen, , S-K. Yang, , J. J. Hnilo, , M. Fiorino, , and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., 2001: EOF representation of the Madden–Julian oscillation and its connection with ENSO. J. Climate, 14 , 30553061.

  • Kessler, W. S., , and M. J. McPhaden, 1995: Oceanic equatorial waves and the 1991–93 El Niño. J. Climate, 8 , 17571774.

  • Kim, Y-J., , and A. Arakawa, 1995: Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model. J. Atmos. Sci., 52 , 18751902.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., , J. C. McWilliams, , and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with nonlocal boundary layer parameterization. Rev. Geophys., 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and Coauthors, 2001: ENSIP: The El Nino simulation intercomparison project. Climate Dyn., 18 , 255276.

  • McCreary, J. P., , and D. L. T. Anderson, 1991: An overview of coupled ocean atmosphere models of El Nino and the Southern Oscillation. J. Geophys. Res., 96 , 31253150.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., , and X. Yu, 1999: Equatorial waves and the 1997–98 El Nino. Geophys. Res. Lett., 26 , 29612964.

  • Mechoso, C. R., and Coauthors, 1995: The seasonal cycle over the tropical Pacific in coupled ocean–atmosphere general circulation models. Mon. Wea. Rev., 123 , 28252838.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , P. R. Gent, , J. M. Arblaster, , B. L. Otto-Blisner, , E. C. Bradly, , and A. Craig, 2001: Factors that affect the amplitude of El Nino in global coupled climate models. Climate Dyn., 17 , 515526.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , D. S. Battisti, , A. A. Hirst, , F-F. Jin, , Y. Wakata, , T. Yamagata, , and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103 , 1426114290.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., , and S. M. Griffies, 1998: MOM 3.0 Manual. NOAA/Geophysical Fluid Dynamics Laboratory, 668 pp.

  • Picaut, J., , F. Marsia, , and Y. du Penhoat, 1997: An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science, 277 , 663666.

    • Search Google Scholar
    • Export Citation
  • Schopf, P S., , and M J. Suarez, 1988: Vacillations in a coupled ocean–atmosphere model. J. Atmos. Sci., 45 , 549566.

  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. I. The basic experiment. Mon. Wea. Rev., 91 , 99164.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , and R. W. Reynolds, 2003: Extended reconstruction of global sea surface temperatures based on COADS data (1854–1997). J. Climate, 16 , 14951510.

    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., , and P. S. Schopf, 1988: A delayed action oscillation for ENSO. J. Atmos. Sci., 45 , 32833287.

  • Syu, H-H., , J. D. Neelin, , and D. Gutzler, 1995: Seasonal and interannual variability in a hybrid coupled GCM. J. Climate, 8 , 21212143.

    • Search Google Scholar
    • Export Citation
  • Tang, Y., , and W. W. Hsieh, 2003: ENSO simulation and prediction in a hybrid coupled model with data assimilation. J. Meteor. Soc. Japan, 81 , 119.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2001: A unified oscillator model for the El Niño–Southern Oscillation. J. Climate, 14 , 98115.

  • Wang, W., , S. Saha, , and H-L. Pan, 2004: Simulation and prediction of the MJO with the NCEP models. Proc. ECMWF/CLIVAR Workshop on Simulation and Prediction of Intra-Seasonal Variability with Emphasis on the MJO, Reading, United Kingdom, ECMWF, 237–249.

  • Weisberg, R. H., , and C. Wang, 1997: A western Pacific oscillator paradigm for the El Nino-Southern Oscillation. Geophys. Res. Lett., 24 , 779782.

    • Search Google Scholar
    • Export Citation
  • Wilson, S. G., 2000: How ocean vertical mixing and accumulation of warm surface water influence the “sharpness” of the equatorial thermocline. J. Climate, 13 , 36383656.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., , A. Kubokawa, , and K. Hanawa, 1989: Oscillations with two feedback processes in a coupled ocean–atmosphere model. J. Climate, 2 , 946964.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., , and M. A. Cane, 1987: A model El Nino/Southern Oscillation. Mon. Wea. Rev., 115 , 22622278.

  • Zhao, Q. Y., , and F. H. Carr, 1997: A prognostic cloud scheme for operational NWP models. Mon. Wea. Rev., 125 , 19311953.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 41 41 5
PDF Downloads 32 32 2

Simulation of ENSO in the New NCEP Coupled Forecast System Model (CFS03)

View More View Less
  • 1 Science Applications International Corporation, National Centers for Environmental Prediction, Camp Springs, Maryland
  • | 2 Environmental Modeling Center, National Centers for Environmental Prediction, Camp Springs, Maryland
  • | 3 Science Applications International Corporation, National Centers for Environmental Prediction, Camp Springs, Maryland
  • | 4 Environmental Modeling Center, National Centers for Environmental Prediction, Camp Springs, Maryland
© Get Permissions
Restricted access

Abstract

A new global coupled atmosphere–ocean forecast system model (CFS03) has recently been developed at the National Centers for Environmental Prediction (NCEP). The new coupled model consists of a T62L64 version of the operational NCEP Atmospheric Global Forecast System model and the Geophysical Fluid Dynamics Laboratory Modular Ocean Model version 3, and is expected to replace the current NCEP operational coupled seasonal forecast model. This study assesses the performance of the new coupled model in simulating El Niño–Southern Oscillation (ENSO), which is considered to be a desirable feature for models used for seasonal prediction. The diagnoses indicate that the new coupled model simulates ENSO variability with realistic frequency. The amplitude of the simulated ENSO is similar to that of the observed strong events, but the ENSO events in the simulation occur more regularly than in observations. The model correctly simulates the observed ENSO seasonal phase locking with the peak amplitude near the end of the year. On average, however, simulated warm events tend to start about 3 months earlier and persist longer than observed. The simulated ENSO is consistent with the delayed oscillator, recharge oscillator, and advective–reflective oscillator theories, suggesting that each of these mechanisms may operate at the same time during the ENSO cycle. The diagnoses of the simulation indicate that the model may be suitable for real-time prediction of ENSO.

* Current affiliation: Climate Prediction Center, National Centers for Environmental Prediction, Camp Springs, Maryland

Corresponding author address: Wanqiu Wang, 5200 Auth Road, Room 605, Camp Springs, MD 20746. Email: wanqui.wang@noaa.gov

Abstract

A new global coupled atmosphere–ocean forecast system model (CFS03) has recently been developed at the National Centers for Environmental Prediction (NCEP). The new coupled model consists of a T62L64 version of the operational NCEP Atmospheric Global Forecast System model and the Geophysical Fluid Dynamics Laboratory Modular Ocean Model version 3, and is expected to replace the current NCEP operational coupled seasonal forecast model. This study assesses the performance of the new coupled model in simulating El Niño–Southern Oscillation (ENSO), which is considered to be a desirable feature for models used for seasonal prediction. The diagnoses indicate that the new coupled model simulates ENSO variability with realistic frequency. The amplitude of the simulated ENSO is similar to that of the observed strong events, but the ENSO events in the simulation occur more regularly than in observations. The model correctly simulates the observed ENSO seasonal phase locking with the peak amplitude near the end of the year. On average, however, simulated warm events tend to start about 3 months earlier and persist longer than observed. The simulated ENSO is consistent with the delayed oscillator, recharge oscillator, and advective–reflective oscillator theories, suggesting that each of these mechanisms may operate at the same time during the ENSO cycle. The diagnoses of the simulation indicate that the model may be suitable for real-time prediction of ENSO.

* Current affiliation: Climate Prediction Center, National Centers for Environmental Prediction, Camp Springs, Maryland

Corresponding author address: Wanqiu Wang, 5200 Auth Road, Room 605, Camp Springs, MD 20746. Email: wanqui.wang@noaa.gov

Save