• Anderson, E., and Coauthors, 1992: LAPACK Users’ Guide. Society for Industrial and Applied Mathematics, 235 pp.

  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129 , 28842903.

  • Anderson, J. L., 2003: A local least squares framework for ensemble filtering. Mon. Wea. Rev., 131 , 634642.

  • Axelsson, O., 1984: Iterative Solution Methods. Cambridge University Press, 644 pp.

  • Bell, B. M., , and F. W. Cathey, 1993: The iterated Kalman filter update as a Gauss-Newton method. IEEE Trans. Automat. Contr., 38 , 294297.

    • Search Google Scholar
    • Export Citation
  • Bishop, C., , J. Etherton, , and S. J. Majmudar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129 , 420436.

    • Search Google Scholar
    • Export Citation
  • Brasseur, P., , J. Ballabrera, , and J. Verron, 1999: Assimilation of altimetric data in the mid-latitude oceans using the SEEK filter with an eddy-resolving primitive equation model. J. Mar. Syst., 22 , 269294.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., , and A. Montani, 1999: Targeting observations using singular vectors. J. Atmos. Sci., 56 , 29652985.

  • Cohn, S. E., 1997: Estimation theory for data assimilation problems: Basic conceptual framework and some open questions. J. Meteor. Soc. Japan, 75 , 257288.

    • Search Google Scholar
    • Export Citation
  • Cohn, S. E., , A. da Silva, , J. Guo, , M. Sienkiewicz, , and D. Lamich, 1998: Assessing the effects of data selection with the DAO physical-space statistical analysis system. Mon. Wea. Rev., 126 , 29132926.

    • Search Google Scholar
    • Export Citation
  • Courtier, P., , J-N. Thepaut, , and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var using an incremental approach. Quart. J. Roy. Meteor. Soc., 120 , 13671388.

    • Search Google Scholar
    • Export Citation
  • Daley, R., , and R. Menard, 1993: Spectral characteristics of Kalman filter systems for atmospheric data assimilation. Mon. Wea. Rev., 121 , 15541565.

    • Search Google Scholar
    • Export Citation
  • Daley, R., , and E. Barker, 2001: NAVDAS: Formulation and diagnostics. Mon. Wea. Rev., 129 , 869883.

  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics. J. Geophys. Res., 99 , C5,. 1014310162.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53 , 343367.

  • Evensen, G., , and P. J. van Leeuwen, 2000: An ensemble Kalman smoother for nonlinear dynamics. Mon. Wea. Rev., 128 , 18521867.

  • Fisher, M., , and P. Courtier, 1995: Estimating the covariance matrix of analysis and forecast error in variational data assimilation. ECMWF Tech. Memo. 220, 28 pp.

  • Gandin, L. S., 1963: Objective Analysis of Meteorological Fields. (in Russian). Gidrometeorizdar, 238 pp. [English translation by Israel Program for Scientific Translations, 1965, 242 pp.].

    • Search Google Scholar
    • Export Citation
  • Gill, P. E., , W. Murray, , and M. H. Wright, 1981: Practical Optimization. Academic Press, 401 pp.

  • Golub, G. H., , and C. F. van Loan, 1989: Matrix Computations. 2d ed. The Johns Hopkins University Press, 642 pp.

  • Gottwald, G., , and R. Grimshaw, 1999a: The formation of coherent structures in the context of blocking. J. Atmos. Sci., 56 , 36403662.

  • Gottwald, G., , and R. Grimshaw, 1999b: The effect of topography on the dynamics of interacting solitary waves in the context of atmospheric blocking. J. Atmos. Sci., 56 , 36633678.

    • Search Google Scholar
    • Export Citation
  • Greenwald, T. J., , S. A. Christopher, , J. Chou, , and J. C. Liljegren, 1999: Inter-comparison of cloud liquid water path derived from the GOES 9 imager and ground based microwave radiometers for continental stratocumulus. J. Geophys. Res., 104 , 92519260.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., , and C. Snyder, 2000: A hybrid ensemble Kalman filter–3D variational analysis scheme. Mon. Wea. Rev., 128 , 29052919.

  • Hamill, T. M., , J. S. Whitaker, , and C. Snyder, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129 , 27762790.

    • Search Google Scholar
    • Export Citation
  • Haugen, V. E. J., , and G. Evensen, 2002: Assimilation of SLA and SST data into an OGCM for the Indian Ocean. Ocean Dyn., 52 , 133151.

  • Heemink, A. W., , M. Verlaan, , and J. Segers, 2001: Variance reduced ensemble Kalman filtering. Mon. Wea. Rev., 129 , 17181728.

  • Houtekamer, P. L., , and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126 , 796811.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., , and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129 , 123137.

    • Search Google Scholar
    • Export Citation
  • Jazwinski, A. H., 1970: Stochastic Processes and Filtering Theory. Academic Press, 376 pp.

  • Kalman, R., , and R. Bucy, 1961: New results in linear prediction and filtering theory. Trans. AMSE J. Basic Eng., 83D , 95108.

  • Keppenne, C. L., 2000: Data assimilation into a primitive-equation model with a parallel ensemble Kalman filter. Mon. Wea. Rev., 128 , 19711981.

    • Search Google Scholar
    • Export Citation
  • Keppenne, C. L., , and M. M. Rienecker, 2002: Initial testing of massively parallel ensemble Kalman filter with the Poseidon isopycnal ocean general circulation model. Mon. Wea. Rev., 130 , 29512965.

    • Search Google Scholar
    • Export Citation
  • Langland, R. H., and Coauthors, 1999: The North Pacific Experiment (NORPEX-98): Targeted observations for improved North American weather forecasts. Bull. Amer. Meteor. Soc., 80 , 13631384.

    • Search Google Scholar
    • Export Citation
  • Lermusiaux, P. F. J., , and A. R. Robinson, 1999: Data assimilation via error subspace statistical estimation. Part I: Theory and schemes. Mon. Wea. Rev., 127 , 13851407.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 1986: Analysis methods for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 112 , 11771194.

  • Luenberger, D. L., 1984: Linear and Non-linear Programming. 2d ed. Addison-Wesley, 491 pp.

  • Majumdar, S. J., , C. H. Bishop, , B. J. Etherton, , and Z. Toth, 2002: Adaptive sampling with the ensemble transform Kalman filter. Part II: Field program implementation. Mon. Wea. Rev., 130 , 13561369.

    • Search Google Scholar
    • Export Citation
  • Marchant, T. R., , and N. F. Smyth, 2002: The initial-boundary problem for the Korteweg–de Vries equation on the negative quarter-plane. Proc. Roy. Soc. London, 458A , 857871.

    • Search Google Scholar
    • Export Citation
  • Menard, R., , S. E. Cohn, , L-P. Chang, , and P. M. Lyster, 2000: Assimilation of stratospheric chemical tracer observations using a Kalman filter. Part I: Formulation. Mon. Wea. Rev., 128 , 26542671.

    • Search Google Scholar
    • Export Citation
  • Mitsudera, H., 1994: Eady solitary waves: A theory of type B cyclogenesis. J. Atmos. Sci., 51 , 31373154.

  • Navon, I. M., , X. Zou, , J. Derber, , and J. Sela, 1992: Variational data assimilation with an adiabatic version of the NMC spectral model. Mon. Wea. Rev., 120 , 14331446.

    • Search Google Scholar
    • Export Citation
  • Nocedal, J., 1980: Updating quasi-Newton matrices with limited storage. Math. Comput., 35 , 773782.

  • Ott, E., and Coauthors, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A , 415428.

  • Palmer, T. N., , R. Gelaro, , J. Barkmeijer, , and R. Buizza, 1998: Singular vectors, metrics, and adaptive observations. J. Atmos. Sci., 55 , 633653.

    • Search Google Scholar
    • Export Citation
  • Parrish, D. F., , and J. C. Derber, 1992: The National Meteorological Center’s Spectral Statistical Interpolation Analysis System. Mon. Wea. Rev., 120 , 17471763.

    • Search Google Scholar
    • Export Citation
  • Pham, D. T., , J. Verron, , and M. C. Roubaud, 1998: A singular evolutive extended Kalman filter for data assimilation in oceanography. J. Mar. Syst., 16 , 323340.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., , A. McNally, , E. Andersson, , P. Courtier, , P. Unden, , J. Eyre, , A. Hollingsworth, , and F. Bouttier, 1998: The ECMWF implementation of three dimensional variational assimilation (3D-Var). Part II: Structure functions. Quart. J. Roy. Meteor. Soc., 124A , 18091829.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., , H. Jarvinen, , E. Klinker, , J-F. Mahfouf, , and A. Simmons, 2000: The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Quart. J. Roy. Meteor. Soc., 126A , 11431170.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., , D. B. McLaughlin, , and D. Entekhabi, 2002a: Hydrologic data assimilation with the ensemble Kalman filter. Mon. Wea. Rev., 130 , 103114.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., , J. P. Walker, , R. D. Koster, , and P. R. Houser, 2002b: Extended versus ensemble Kalman filtering for land data assimilation. J. Hydrometor., 3 , 728740.

    • Search Google Scholar
    • Export Citation
  • Szunyogh, I., , Z. Toth, , A. V. Zimin, , S. J. Majumdar, , and A. Persson, 2002: Propagation of the effect of targeted observations: The 2000 Winter Storm Reconnaissance Program. Mon. Wea. Rev., 130 , 11441165.

    • Search Google Scholar
    • Export Citation
  • Tippett, M., , J. L. Anderson, , C. H. Bishop, , T. M. Hamill, , and J. S. Whitaker, 2003: Ensemble square root filters. Mon. Wea. Rev., 131 , 14851490.

    • Search Google Scholar
    • Export Citation
  • van Leeuwen, P. J., 2001: An ensemble smoother with error estimates. Mon. Wea. Rev., 129 , 709728.

  • Verlaan, M., , and A. W. Heemink, 2001: Nonlinearity in data assimilation applications: A practical method for analysis. Mon. Wea. Rev., 129 , 15781589.

    • Search Google Scholar
    • Export Citation
  • Vvedensky, D., 1993: Partial Differential Equations with Mathematica. Addison-Wesley, 465 pp.

  • Whitaker, J. S., , and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130 , 19131924.

  • Zou, X., , Y-H. Kuo, , and Y-R. Guo, 1995: Assimilation of atmospheric radio refractivity using a nonhydrostatic adjoint model. Mon. Wea. Rev., 123 , 22292250.

    • Search Google Scholar
    • Export Citation
  • Zou, X., , H. Liu, , J. Derber, , J. G. Sela, , R. Treadon, , I. M. Navon, , and B. Wang, 2001: Four-dimensional variational data assimilation with a diabatic version of the NCEP global spectral model: System development and preliminary results. Quart. J. Roy. Meteor. Soc., 127 , 10951122.

    • Search Google Scholar
    • Export Citation
  • Zupanski, M., 1993: Regional four-dimensional variational data assimilation in a quasi-operational forecasting environment. Mon. Wea. Rev., 121 , 23962408.

    • Search Google Scholar
    • Export Citation
  • Zupanski, M., , D. Zupanski, , D. Parrish, , E. Rogers, , and G. DiMego, 2002: Four-dimensional variational data assimilation for the Blizzard of 2000. Mon. Wea. Rev., 130 , 19671988.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 155 155 36
PDF Downloads 77 77 14

Maximum Likelihood Ensemble Filter: Theoretical Aspects

View More View Less
  • 1 Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado
© Get Permissions
Restricted access

Abstract

A new ensemble-based data assimilation method, named the maximum likelihood ensemble filter (MLEF), is presented. The analysis solution maximizes the likelihood of the posterior probability distribution, obtained by minimization of a cost function that depends on a general nonlinear observation operator. The MLEF belongs to the class of deterministic ensemble filters, since no perturbed observations are employed. As in variational and ensemble data assimilation methods, the cost function is derived using a Gaussian probability density function framework. Like other ensemble data assimilation algorithms, the MLEF produces an estimate of the analysis uncertainty (e.g., analysis error covariance). In addition to the common use of ensembles in calculation of the forecast error covariance, the ensembles in MLEF are exploited to efficiently calculate the Hessian preconditioning and the gradient of the cost function. A sufficient number of iterative minimization steps is 2–3, because of superior Hessian preconditioning. The MLEF method is well suited for use with highly nonlinear observation operators, for a small additional computational cost of minimization. The consistent treatment of nonlinear observation operators through optimization is an advantage of the MLEF over other ensemble data assimilation algorithms. The cost of MLEF is comparable to the cost of existing ensemble Kalman filter algorithms. The method is directly applicable to most complex forecast models and observation operators. In this paper, the MLEF method is applied to data assimilation with the one-dimensional Korteweg–de Vries–Burgers equation. The tested observation operator is quadratic, in order to make the assimilation problem more challenging. The results illustrate the stability of the MLEF performance, as well as the benefit of the cost function minimization. The improvement is noted in terms of the rms error, as well as the analysis error covariance. The statistics of innovation vectors (observation minus forecast) also indicate a stable performance of the MLEF algorithm. Additional experiments suggest the amplified benefit of targeted observations in ensemble data assimilation.

Corresponding author address: Milija Zupanski, Cooperative Institute for Research in the Atmosphere, Colorado State University, Foothills Campus, Fort Collins, CO 80523-1375. Email: zupanskim@cira.colostate.edu

Abstract

A new ensemble-based data assimilation method, named the maximum likelihood ensemble filter (MLEF), is presented. The analysis solution maximizes the likelihood of the posterior probability distribution, obtained by minimization of a cost function that depends on a general nonlinear observation operator. The MLEF belongs to the class of deterministic ensemble filters, since no perturbed observations are employed. As in variational and ensemble data assimilation methods, the cost function is derived using a Gaussian probability density function framework. Like other ensemble data assimilation algorithms, the MLEF produces an estimate of the analysis uncertainty (e.g., analysis error covariance). In addition to the common use of ensembles in calculation of the forecast error covariance, the ensembles in MLEF are exploited to efficiently calculate the Hessian preconditioning and the gradient of the cost function. A sufficient number of iterative minimization steps is 2–3, because of superior Hessian preconditioning. The MLEF method is well suited for use with highly nonlinear observation operators, for a small additional computational cost of minimization. The consistent treatment of nonlinear observation operators through optimization is an advantage of the MLEF over other ensemble data assimilation algorithms. The cost of MLEF is comparable to the cost of existing ensemble Kalman filter algorithms. The method is directly applicable to most complex forecast models and observation operators. In this paper, the MLEF method is applied to data assimilation with the one-dimensional Korteweg–de Vries–Burgers equation. The tested observation operator is quadratic, in order to make the assimilation problem more challenging. The results illustrate the stability of the MLEF performance, as well as the benefit of the cost function minimization. The improvement is noted in terms of the rms error, as well as the analysis error covariance. The statistics of innovation vectors (observation minus forecast) also indicate a stable performance of the MLEF algorithm. Additional experiments suggest the amplified benefit of targeted observations in ensemble data assimilation.

Corresponding author address: Milija Zupanski, Cooperative Institute for Research in the Atmosphere, Colorado State University, Foothills Campus, Fort Collins, CO 80523-1375. Email: zupanskim@cira.colostate.edu

Save