• Ahmad, B., 1998: Accuracy and resolution of atmospheric profiles obtained from radio occultation measurements. Scientific Rep. DPD811-1988-1, Center for Radar Astronomy, Stanford, CA, 123 pp.

  • Ahmad, B., and G. L. Tyler, 1998: The two-dimensional resolution kernel associated with retrieval of ionospheric and atmospheric refractivity profiles by Abelian inversion of radio occultation phase data. Radio Sci., 33 , 129142.

    • Search Google Scholar
    • Export Citation
  • Ahmad, B., and G. L. Tyler, 1999: Systematic errors in atmospheric profiles obtained from Abelian inversion of radio occultation data: Effects of large-scale horizontal gradients. J. Geophys. Res., 104 , 39713992.

    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., C. Rocken, and Y-H. Kuo, 2000: Application of COSMIC to meteorology and climate. Terr. Atmos. Oceanic Sci., 11 , 1,. 115156.

    • Search Google Scholar
    • Export Citation
  • Chen, S-H., and W-Y. Sun, 2002: A one dimensional time-dependent cloud model. J. Meteor. Soc. Japan, 80 , 99118.

  • Eyre, J. R., 1994: Assimilation of radio occultation measurements into a numerical weather prediction system. European Centre for Medium-Range Weather Forecasts, Tech. Memo. 199, 34 pp.

  • Feng, D. D., and B. M. Herman, 1999: Remotely sensing the earth’s atmosphere using the global positioning system (GPS). J. Atmos. Oceanic Technol., 16 , 9891002.

    • Search Google Scholar
    • Export Citation
  • Gorbunov, M. E., 1990: Solution of inverse problems of remote atmospheric refractometry on limb paths. Izv. Atmos. Oceanic Phys., 26 , 8691.

    • Search Google Scholar
    • Export Citation
  • Gorbunov, M. E., 2002: Canonical transform method for processing radio occultation data in the lower troposphere. Radio Sci., 37 .1076, doi:10.1029/2000RS002592.

    • Search Google Scholar
    • Export Citation
  • Gorbunov, M. E., and S. V. Sokolovskiy, 1993: Remote sensing of refractivity from space for global observation of atmospheric parameters. Max Planck Institute for Meteorology Rep. 119, 58 pp.

  • Gorbunov, M. E., and L. Kornblueh, 2003: Principles of variational assimilation of GNSS radio occultation data. Max Planck Institute for Meteorology Rep. 350, 34 pp.

  • Gorbunov, M. E., S. V. Sokolovskiy, and L. Bengtsson, 1996: Space refractive tomography of the atmosphere: Modeling of direct and inverse problems. Max Planck Institute for Meteorology Rep. 210, 59 pp.

  • Gurvich, A. S., and S. V. Sokolovsky, 1985: Reconstruction of a pressure field by remote refractometry from space. Izv. Atmos. Oceanic Phys., 21 , 713.

    • Search Google Scholar
    • Export Citation
  • Gurvich, A. S., and T. G. Krasil’nikova, 1987: Navigation satellites for radio sensing of the earth’s atmosphere. Sov. J. Remote Sens., 7 , 8993.

    • Search Google Scholar
    • Export Citation
  • Hajj, G. A., E. R. Kursinski, L. J. Romans, W. I. Bertiger, and S. S. Leroy, 2002: A technical description of atmospheric sounding by GPS occultation. J. Atmos. Sol.-Terr. Phys., 64 , 451469.

    • Search Google Scholar
    • Export Citation
  • Hardy, E. R., D. P. Hinson, G. L. Tyler, and E. R. Kursinski, 1992: Atmospheric profiles from active space-based radio measurements. Preprints, Sixth Conf. on Satellite Meteorology and Oceanography, Atlanta, GA, Amer. Meteor. Soc., 420–423.

  • Hocke, K., 1997: Inversion of GPS meteorology data. Ann. Geophys., 15 , 443450.

  • Jensen, A. S., M. S. Lohmann, H-H. Benzon, and A. S. Nielsen, 2003: Full spectrum inversion of radio occultation signals. Radio Sci., 38 .1040, doi:10.1029/2002RS002763.

    • Search Google Scholar
    • Export Citation
  • Kravtsov, Yu A., and Yu I. Orlov, 1990: Geometrical optics of inhomogeneous media. Springer-Verlag, 216 pp. .

  • Kuo, Y-H., S. V. Sokolovskiy, R. A. Anthes, and F. Vandenberghe, 2000: Assimilation of GPS radio occultation data for numerical weather prediction. Terr. Atmos. Oceanic Sci., 11 , 1,. 157186.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y-H., T-K. Wee, S. Sokolovskiy, C. Rocken, W. Schreiner, D. Hunt, and R. A. Anthes, 2004: Inversion and error estimation of GPS radio occultation data. J. Meteor. Soc. Japan, 82B , 507531.

    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., G. A. Hajj, J. T. Schofield, R. P. Linfield, and K. R. Hardy, 1997: Observing earth’s atmosphere with radio occultation measurements using the global positioning system. J. Geophys. Res., 102 , D19,. 2342923465.

    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., G. A. Hajj, S. S. Leroy, and B. M. Herman, 2000: The GPS radio occultation technique. Terr. Atmos. Oceanic Sci., 11 , 1,. 235272.

    • Search Google Scholar
    • Export Citation
  • Lin, Y-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22 , 10651092.

    • Search Google Scholar
    • Export Citation
  • Liu, H., and X. Zou, 2003: Improvements to a GPS radio occultation ray-tracing model and their impacts on assimilation of bending angle. J. Geophys. Res., 108 .4548, doi:10.1029/2002JD003160.

    • Search Google Scholar
    • Export Citation
  • Liu, H., X. Zou, H. Shao, R. A. Anthes, J. C. Chang, J-H. Tseng, and B. Wang, 2001: Impact of 837 bending angle profiles on assimilation and forecasts for the period June 20–30, 1995. J. Geophys. Res., 106 , D23,. 3177131786.

    • Search Google Scholar
    • Export Citation
  • Marquardt, C., J. Eyre, S. Healy, A. Jupp, and D. Offiler, 2003: Use of GPS radio occultation data in meteorological services. U.K. Met Office Forecast Research Tech. Rep. 403, 9 pp.

  • Melbourne, W. G., and Coauthors, 1994: The application of spaceborne GPS to atmospheric limb sounding and global change monitoring. JPL Publication 94-18, 147 pp.

  • Michalakes, J., S. Chen, J. Dudhia, J. Klemp, J. Middlecoff, and W. Skamarock, 2001: Development of a next generation regional weather research and forecast model. Developments in Teracomputing: Proceedings of the Ninth ECMWF Workshop on the Use of High Performance Computing in Meteorology, W. Zwieflhofer and N. Kreitz, Eds., World Scientific, 269–276.

    • Search Google Scholar
    • Export Citation
  • Poli, P., 2004: Effects of horizontal gradients on GPS radio occultation observation operators. II: A Fast Atmospheric Refractivity Gradient Operator (FARGO). Quart. J. Roy. Meteor. Soc., 130 .doi:10.1256/qj.03.229.

    • Search Google Scholar
    • Export Citation
  • Poli, P., and J. Joiner, 2004: Effects of horizontal gradients on GPS radio occultation observation operators. I: Ray tracing. Quart. J. Roy. Meteor. Soc., 130 .doi:10.1256/qj.03.228.

    • Search Google Scholar
    • Export Citation
  • Poli, P., J. Joiner, and E. R. Kursinski, 2002: 1DVAR analysis of temperature and humidity using GPS radio occultation refractivity data. J. Geophys. Res., 107 .4448, doi:10.1029/2001JD000935.

    • Search Google Scholar
    • Export Citation
  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992: Numerical Recipes in Fortran 77. Cambridge University Press, 933 pp.

    • Search Google Scholar
    • Export Citation
  • Rocken, C., and Coauthors, 1997: Analysis and validation of GPS/MET data in the neutral atmosphere. J. Geophys. Res., 102 , D25,. 2984929866.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, and J. Dudhia, 2001: Prototypes for the Weather Research and Forecasting Model (WRF). Preprints, Ninth Conf. on Mesoscale Processes, Fort Lauderdale, FL, Amer. Meteor. Soc., J11–J15.

  • Sokolovsky, S. V., 1986: Possibility for remote refractometric sensing of the atmosphere using FGGE (First Global GARP Experiment) data: Numerical experiment. Izv. Atmos. Oceanic Phys., 22 , 691693.

    • Search Google Scholar
    • Export Citation
  • Sokolovskiy, S., 2003: Effect of superrefraction on inversions of radio occultation signals in the lower toposphere. Radio Sci., 38 .1058, doi:10.1029/2002RS002728.

    • Search Google Scholar
    • Export Citation
  • Steiner, A. K., G. Kirchengast, and H. P. Ladreiter, 1999: Inversion, error analysis, and validation of GPS/MET occultation data. Ann. Geophys., 17 , 122138.

    • Search Google Scholar
    • Export Citation
  • Syndergaard, S., 1999: Retrieval analysis and methodologies in atmospheric limb sounding using GNSS radio occultation technique. Danish Meteorological Institute Scientific Rep. 99–6, Copenhagen, Denmark, 75 pp.

  • Syndergaard, S., D. Flittner, R. Kursinski, and B. Herman, 2003: Simulating the influence of horizontal gradients on refractivity profiles from radio occultations. Proc. Fourth Oersted Int. Science Team Conf. (OIST-4), Copenhagen, Denmark, Danish Meteorological Institute, 245–250.

  • Syndergaard, S., D. Flittner, R. Kursinski, E. M. Lane, and D. E. Flittner, 2005: A refractive index mapping operator for assimilation of occultation data. Mon. Wea. Rev., in press.

    • Search Google Scholar
    • Export Citation
  • Thayer, G. D., 1974: An improved equation for the radio refractive index of air. Radio Sci., 9 , 803807.

  • Vorob’ev, V. V., and T. G. Krasil’nikova, 1994: Estimation of the accuracy of the atmospheric refractive index recovery from Doppler shift measurements at frequencies used in the NAVSTAR system. Izv. Atmos. Oceanic Phys., 29 , 602609.

    • Search Google Scholar
    • Export Citation
  • Wickert, J., and Coauthors, 2001: Atmosphere sounding by GPS radio occultation: First results from CHAMP. Geophys. Res. Lett., 28 , 32633266.

    • Search Google Scholar
    • Export Citation
  • Yunck, T. P., G. F. Lindall, and C-H. Liu, 1988: The role of GPS in precise earth observation. Proc. Position Location and Navigation Symp. (PLANS 88), Orlando, FL, IEEE, 251–258.

  • Yunck, T. P., C-H. Liu, and R. Ware, 2000: A history of GPS sounding. Terr. Atmos. Oceanic Sci., 11 , 120.

  • Zou, X., Y-H. Kuo, and Y-R. Guo, 1995: Assimilation of atmospheric radio refractivity using a nonhydrostatic adjoint model. Mon. Wea. Rev., 123 , 22292249.

    • Search Google Scholar
    • Export Citation
  • Zou, X., and Coauthors, 1999: A ray-tracing operator and its adjoint for the use of GPS/MET refraction angle measurements. J. Geophys. Res., 104 , 2230122318.

    • Search Google Scholar
    • Export Citation
  • Zou, X., B. Wang, H. Liu, R. A. Anthes, T. Matsumura, and Y. J. Zhu, 2000: Use of GPS/MET refraction angles in three-dimensional variational analysis. Quart. J. Roy. Meteor. Soc., 126 , 30133040.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3 3 3
PDF Downloads 1 1 1

Assessing the Accuracy of a Linearized Observation Operator for Assimilation of Radio Occultation Data: Case Simulations with a High-Resolution Weather Model

View More View Less
  • 1 University Corporation for Atmospheric Research, Boulder, Colorado, and A. M. Obukhov Institute of Atmospheric Physics, Moscow, Russia
  • | 2 University Corporation for Atmospheric Research, and National Center for Atmospheric Research, Boulder, Colorado
  • | 3 National Center for Atmospheric Research, Boulder, Colorado
Restricted access

Abstract

Assimilation into numerical weather models of the refractivity, Abel-retrieved from radio occultations, as the local refractivity at ray tangent point may result in large errors in the presence of strong horizontal gradients (atmospheric fronts, strong convection). To reduce these errors, other authors suggested modeling the Abel-retrieved refractivity as a nonlocal linear function of the 3D refractivity, which can be used as a linear observation operator for assimiliation. The authors of this study introduce their approach for the nonlocal linear observation operator, which consists of modeling the excess phase path, calculated along certain trajectories below the top of an atmospheric model. In this study (not aimed at development of an observation operator for any specific atmospheric model), both approaches are validated by assessing the accuracy of both linearized observation operators by numerical simulations with the high-resolution Weather Research and Forecasting (WRF) model and comparing them to the accuracy of interpretation of the Abel-retrieved refractivity as local. Improvement of the accuracy of about an order of magnitude is found with the nonlocal refractivity and further improvement is found with the excess phase path. The effect of horizontal resolution of an atmospheric model on the accuracy of modeling local and nonlocal linear observables is also investigated, and it is demonstrated that the nonlocal linear modeling of radio occultation observables is especially important for weather prediction models with sufficiently high horizontal resolution, grid size <100 km (mesoscale models).

Corresponding author address: Sergey Sokolovskiy, 3300 Mitchell Ln., #3436, Boulder, CO, 80301. Email: sergey@ucar.edu

Abstract

Assimilation into numerical weather models of the refractivity, Abel-retrieved from radio occultations, as the local refractivity at ray tangent point may result in large errors in the presence of strong horizontal gradients (atmospheric fronts, strong convection). To reduce these errors, other authors suggested modeling the Abel-retrieved refractivity as a nonlocal linear function of the 3D refractivity, which can be used as a linear observation operator for assimiliation. The authors of this study introduce their approach for the nonlocal linear observation operator, which consists of modeling the excess phase path, calculated along certain trajectories below the top of an atmospheric model. In this study (not aimed at development of an observation operator for any specific atmospheric model), both approaches are validated by assessing the accuracy of both linearized observation operators by numerical simulations with the high-resolution Weather Research and Forecasting (WRF) model and comparing them to the accuracy of interpretation of the Abel-retrieved refractivity as local. Improvement of the accuracy of about an order of magnitude is found with the nonlocal refractivity and further improvement is found with the excess phase path. The effect of horizontal resolution of an atmospheric model on the accuracy of modeling local and nonlocal linear observables is also investigated, and it is demonstrated that the nonlocal linear modeling of radio occultation observables is especially important for weather prediction models with sufficiently high horizontal resolution, grid size <100 km (mesoscale models).

Corresponding author address: Sergey Sokolovskiy, 3300 Mitchell Ln., #3436, Boulder, CO, 80301. Email: sergey@ucar.edu

Save