• ACS, 2004a: Cancer facts and figures 2004 American Cancer Society Rep. 5008.04, 60 pp.

  • ACS, 2004b: Cancer prevention and early detection: Facts and figures 2004. American Cancer Society Rep. 8600.04, 48 pp.

  • Akiyoshi, H., S. Sugata, T. Sugita, H. Nakajima, H. Hayashi, J. Kurokawa, and M. Takahashi, 2002: Low-N2O air masses after the breakdown of the arctic polar vortex in 1997 simulated by the CCSR/NIES nudging CTM. J. Meteor. Soc. Japan, 80 , 451463.

    • Search Google Scholar
    • Export Citation
  • Aldaz, L., 1969: Flux measurements of atmospheric ozone over land and water. J. Geophys. Res., 74 , 69436946.

  • Austin, J., 2002: A three-dimensional coupled chemistry–climate model simulation of past stratospheric trends. J. Atmos. Sci., 59 , 218232.

    • Search Google Scholar
    • Export Citation
  • Austin, J., and Coauthors, 2002: Uncertainties and assessments of chemistry-climate models of the stratosphere. Atmos. Chem. Phys. Discuss., 2 , 10351096.

    • Search Google Scholar
    • Export Citation
  • Bodhaine, B. A., and Coauthors, 1996: New ultraviolet spectroradiometer measurements at Mauna Loa Observatory. Geophys. Res. Lett., 23 , 21212124.

    • Search Google Scholar
    • Export Citation
  • Bodhaine, B. A., E. G. Dutton, D. J. Hofmann, R. L. McKenzie, and P. V. Johnston, 1997: Uv measurements at Mauna Loa: July 1995 to July 1996. J. Geophys. Res., 102 , 1926519273.

    • Search Google Scholar
    • Export Citation
  • Brasseur, G. P., J. J. Orlando, and G. S. Tyndall, 1999: Atmospheric Chemistry and Global Change. Oxford University Press, 654 pp.

  • Burrows, W. R., 1997: CART regression models for predicting UV radiation at the ground in the presence of cloud and other environmental factors. J. Appl. Meteor., 36 , 531544.

    • Search Google Scholar
    • Export Citation
  • Carslaw, K. S., T. Peter, and S. L. Clegg, 1997: Modeling the composition of liquid stratospheric aerosols. Rev. Geophys., 35 , 125154.

    • Search Google Scholar
    • Export Citation
  • Chubachi, S., 1985: A special ozone observation at Syowa Station, Antarctica, from February 1982 to January 1983. Proc. Quadrennial Ozone Symp., Halkidiki, Greece, International Ozone Commission, 285–289.

  • Crutzen, P. J., 1970: The influence of nitrogen oxides on the atmospheric ozone content. Quart. J. Roy. Meteor. Soc., 96 , 320325.

  • Davies, S., and Coauthors, 2002: Modeling the effect of denitrification on Arctic ozone depletion during winter 1999/2000. J. Geophys. Res., 108 .8322, doi:10.1029/2001JD000445.

    • Search Google Scholar
    • Export Citation
  • de Grandpré, J., S. R. Beagley, V. I. Fomichev, E. Griffioen, J. C. McConnell, A. S. Medvedev, and T. G. Shepherd, 2000: Ozone climatology using interactive chemistry: Results from the Canadian Middle Atmosphere Model. J. Geophys. Res., 105 , 2647526492.

    • Search Google Scholar
    • Export Citation
  • DeMore, W. B., and Coauthors, 1997: Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling. JPL Publication 97–4, Jet Propulsion Laboratory, Pasadena, CA, 269 pp.

  • Deniel, C., R. M. Bevilacqua, J. P. Pommereau, and F. Lefèvre, 1998: Arctic chemical ozone depletion during the 1994–1995 winter deduced from POAM II satellite observations and the REPROBUS three-dimensional model. J. Geophys. Res., 103 , 1923119236.

    • Search Google Scholar
    • Export Citation
  • Dobson, G. M. B., 1963: Exploring the Atmosphere. Clarendon Press, 188 pp.

  • Eskes, H. J., P. F. J. van Velthoven, and H. M. Kelder, 2002: Global ozone forecasting based on ERS-2 GOME observations. Atmos. Chem. Phys. Discuss., 2 , 921942.

    • Search Google Scholar
    • Export Citation
  • Farman, J. C., B. G. Gardiner, and J. D. Shanklin, 1985: Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315 , 207210.

    • Search Google Scholar
    • Export Citation
  • Fioletov, V. E., G. E. Bodeker, A. J. Miller, R. D. McPeters, and R. Stolarski, 2002: Global and zonal total ozone variations estimated from ground-based and satellite measurements: 1964–2000. J. Geophys. Res., 107 .4647, doi:10.1029/2001JD001350.

    • Search Google Scholar
    • Export Citation
  • Hanson, D., and K. Mauersberger, 1988: Laboratory studies of the nitric acid trihydrate: Implications for the south polar stratosphere. Geophys. Res. Lett., 15 , 855858.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere–troposphere exchange. Rev. Geophys., 33 , 403439.

    • Search Google Scholar
    • Export Citation
  • Jackman, C. H., E. L. Fleming, S. Chandra, D. B. Considine, and J. E. Rosenfield, 1996: Past, present and future modeled ozone trends with comparisons to observed trends. J. Geophys. Res., 101 , 2875328767.

    • Search Google Scholar
    • Export Citation
  • Jacob, J. A., S. M. Fan, S. C. Wofsy, P. A. Spiro, and P. S. Bakwin, 1992: Deposition of ozone to tundra. J. Geophys. Res., 97 , 1647316479.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2002: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 512 pp.

  • Kerr, J. B., and C. T. McElroy, 1993: Evidence for large upward trends of ultraviolet-B radiation linked to ozone depletion. Science, 262 , 10321034.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and Coauthors, 2003: Improved skill for the anomaly correlation of geopotential heights at 500 hPa. Mon. Wea. Rev., 131 , 10821102.

    • Search Google Scholar
    • Export Citation
  • Lefèvre, F., G. P. Brasseur, I. Folkins, A. K. Smith, and P. Simon, 1994: Chemistry of the 1991–1992 stratospheric winter: Three-dimensional model simulations. J. Geophys. Res., 99 , 81838195.

    • Search Google Scholar
    • Export Citation
  • Long, C. S., A. J. Miller, H. T. Lee, J. D. Wild, R. C. Przywarty, and D. Hufford, 1996: Ultraviolet index forecasts issued by the National Weather Service. Bull. Amer. Meteor. Soc., 77 , 729748.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1965: A study of the predictability of a 28-variable atmospheric model. Tellus, 17 , 321333.

  • Marti, J., and K. Mauersberger, 1993: A survey and new measurements of ice vapor pressure at temperatures between 170 and 250 K. Geophys. Res. Lett., 20 , 363366.

    • Search Google Scholar
    • Export Citation
  • Molina, M. J., and F. Rowland, 1974: Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalysed destruction of ozone. Nature, 249 , 810812.

    • Search Google Scholar
    • Export Citation
  • Nagashima, T., M. Takahashi, M. Takigawa, and H. Akiyoshi, 2002: Future development of the ozone layer calculated by a general circulation model with fully interactive chemistry. Geophys. Res. Lett., 29 .1162, doi:10.1029/2001GL014026.

    • Search Google Scholar
    • Export Citation
  • Plets, H., and C. Vynckier, 2000: A comparative study of statistical total column ozone forecasting models. J. Geophys. Res., 105 , 2650326517.

    • Search Google Scholar
    • Export Citation
  • Rikus, L., 1997: Prediction of UV-B dosage at the surface. Aust. Meteor. Mag., 46 , 211222.

  • Rozanov, E. V., M. E. Schlesinger, and V. A. Zubov, 2001: The University of Illinois, Urbana-Champaign three-dimensional stratosphere–troposphere general circulation model with interactive ozone photochemistry: Fifteen-year control run climatology. J. Geophys. Res., 106 , 2723327254.

    • Search Google Scholar
    • Export Citation
  • Sander, S. P., and Coauthors, 2000: Chemical kinetics and photochemical data for use in stratospheric modeling supplement to evaluation 12: Update of key reactions. JPL Publication 00-3, Jet Propulsion Laboratory, Pasadena, CA, 74 pp.

  • Schnadt, C., M. Dameris, M. Ponater, R. Hein, V. Grewe, and B. Steil, 2002: Interaction of atmosphere chemistry and climate and its impact on stratospheric ozone. Climate Dyn., 18 , 501517.

    • Search Google Scholar
    • Export Citation
  • Shibata, K., H. Yoshimura, M. Ohizumi, M. Hosaka, and M. Sugi, 1999: A simulation of troposphere, stratosphere and mesosphere with an MRI/JMA98 GCM. Pap. Meteor. Geophys., 50 , 1553.

    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., D. Rind, and P. Lonergan, 1998: Increased polar stratospheric ozone losses and delayed eventual recovery owing to increasing greenhouse-gas concentrations. Nature, 392 , 589592.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and D. M. Burridge, 1981: An energy and angular-momentum conserving vertical finite-difference scheme and hybrid coordinate. Mon. Wea. Rev., 109 , 758766.

    • Search Google Scholar
    • Export Citation
  • Takao, T., M. Aono, T. Kishi, K. Sakurai, O. Ijima, M. Takekawa, O. Narita, and M. Shitamichi, 1999: Ultraviolet spectral irradiance observations at Syowa Station, Antarctica 1991–1996. Geophys. Mag., 3 , 95107.

    • Search Google Scholar
    • Export Citation
  • Varotsos, C., and K. Y. Kondratyev, 1995: On the relationship between total ozone and solar ultraviolet radiation at St. Petersburg, Russia. Geophys. Res. Lett., 22 , 34813484.

    • Search Google Scholar
    • Export Citation
  • WMO, 1992: Scientific assessment of ozone depletion: 1991, Global Ozone Research and Monitoring Project—Report No. 25. World Meteorological Organization, 366 pp.

  • WMO, 1995: Scientific assessment of ozone depletion: 1994, Global Ozone Research and Monitoring Project—Report No. 37. World Meteorological Organization, 578 pp.

  • WMO, 1999: Scientific assessment of ozone depletion: 1998, Global Ozone Research and Monitoring Project—Report No. 44. World Meteorological Organization, 732 pp.

  • WMO, 2003: Scientific assessment of ozone depletion: 2002, Global Ozone Research and Monitoring Project—Report No. 47. World Meteorological Organization, 498 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 0 0 0
PDF Downloads 0 0 0

Predictability of Total Ozone Using a Global Three-Dimensional Chemical Transport Model Coupled with the MRI/JMA98 GCM

View More View Less
  • 1 Meteorological Research Institute, Tsukuba, Ibaraki, Japan
Restricted access

Abstract

A global three-dimensional chemical transport model is being developed for forecasting total ozone. The model includes detailed stratospheric chemistry and transport and couples with a dynamical module of the Meteorological Research Institute/Japan Meteorological Agency 1998 (MRI/JMA98) general circulation model, which can yield realistic atmospheric fields through a meteorological assimilation system. Its predictability on total ozone is investigated for up to 4 weeks from 1997 to 2000. Global root-mean-square errors (rmses) of a control run are approximately 10 DU (3% of total ozone) throughout a year; the control run results are used as initial values for hindcast experiments. Rmses of the hindcast experiments globally range from 10 to 30 DU. The anomaly correlation between the 5-day forecasts and satellite measurements is approximately 0.6 throughout a year in the mid- and high latitudes of both the Northern and Southern Hemispheres. Thus, the model has potential for utilization on total ozone forecasts up to 5 days. In the northern mid- and high latitudes, the model produces better total ozone forecasts than the persistence up to 2 weeks, indicating that the deterministic limit of the total ozone forecasts is durationally comparable to that of weather forecasts. Good correlations between changes in total ozone and 100-hPa geopotential height reveal that the predictability of the dynamical field in the lower stratosphere critically affects the predictability of total ozone.

Corresponding author address: T. T. Sekiyama, Atmospheric Environment and Applied Meteorology Research Department, Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki 3050052, Japan. Email: tsekiyam@mri-jma.go.jp

Abstract

A global three-dimensional chemical transport model is being developed for forecasting total ozone. The model includes detailed stratospheric chemistry and transport and couples with a dynamical module of the Meteorological Research Institute/Japan Meteorological Agency 1998 (MRI/JMA98) general circulation model, which can yield realistic atmospheric fields through a meteorological assimilation system. Its predictability on total ozone is investigated for up to 4 weeks from 1997 to 2000. Global root-mean-square errors (rmses) of a control run are approximately 10 DU (3% of total ozone) throughout a year; the control run results are used as initial values for hindcast experiments. Rmses of the hindcast experiments globally range from 10 to 30 DU. The anomaly correlation between the 5-day forecasts and satellite measurements is approximately 0.6 throughout a year in the mid- and high latitudes of both the Northern and Southern Hemispheres. Thus, the model has potential for utilization on total ozone forecasts up to 5 days. In the northern mid- and high latitudes, the model produces better total ozone forecasts than the persistence up to 2 weeks, indicating that the deterministic limit of the total ozone forecasts is durationally comparable to that of weather forecasts. Good correlations between changes in total ozone and 100-hPa geopotential height reveal that the predictability of the dynamical field in the lower stratosphere critically affects the predictability of total ozone.

Corresponding author address: T. T. Sekiyama, Atmospheric Environment and Applied Meteorology Research Department, Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki 3050052, Japan. Email: tsekiyam@mri-jma.go.jp

Save