• Archer, C. L., 2004: The Santa Cruz eddy and U.S. wind power. Ph.D. thesis, Stanford University, 190 pp.

  • Archer, C. L., and M. Z. Jacobson, 2005: The Santa Cruz eddy. Part I: Observations and statistics. Mon. Wea. Rev., 133 , 767782.

  • Brighton, P. W., 1978: Strongly stratified flow past three-dimensional obstacles. Quart. J. Roy. Meteor. Soc., 104 , 289307.

  • Burk, S. D., and T. Haack, 2000: The dynamics of wave clouds upwind of coastal topography. Mon. Wea. Rev., 128 , 14381455.

  • Burk, S. D., T. Haack, and R. M. Samelson, 1999: Mesoscale simulation of supercritical, subcritical, and transitional flow along coastal topography. J. Atmos. Sci., 56 , 27802795.

    • Search Google Scholar
    • Export Citation
  • Castro, I. P., W. H. Snyder, and G. L. Marsh, 1983: Stratified flow over three-dimensional ridges. J. Fluid Mech., 135 , 261282.

  • Chen, F., and Coauthors, 1996: Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101D , 72517268.

    • Search Google Scholar
    • Export Citation
  • Chen, F., Z. Janjić, and K. Mitchell, 1997: Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale ETA model. Bound.-Layer Meteor., 85 , 391421.

    • Search Google Scholar
    • Export Citation
  • Chopra, K. P., 1973: Atmospheric and oceanic flow problems introduced by islands. Advances in Geophysics, Vol. 16, Academic Press, 297–421.

  • Chopra, K. P., and L. F. Hubert, 1965: Mesoscale eddies in wake of islands. J. Atmos. Sci., 22 , 652657.

  • Chuang, H-Y., and P. J. Sousonis, 2000: A technique for generating idealized initial and boundary conditions for the PSU–NCAR model MM5. Mon. Wea. Rev., 128 , 28752882.

    • Search Google Scholar
    • Export Citation
  • Crook, N. A., T. L. Clark, and M. W. Moncrieff, 1990: The Denver Cyclone. Part I: Generation in low Froude number flow. J. Atmos. Sci., 47 , 27252742.

    • Search Google Scholar
    • Export Citation
  • Crook, N. A., T. L. Clark, and M. W. Moncrieff, 1991: The Denver Cyclone. Part II: Interaction with the convective boundary layer. J. Atmos. Sci., 48 , 21092126.

    • Search Google Scholar
    • Export Citation
  • Davis, C., S. Low-Nam, and C. F. Mass, 2000: Dynamics of a Catalina eddy revealed by numerical simulation. Mon. Wea. Rev., 128 , 28852904.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State/NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121 , 14931513.

    • Search Google Scholar
    • Export Citation
  • Epifanio, C. C., and D. R. Durran, 2002a: Lee-vortex formation in free-slip stratified flow over ridges. Part I: Comparison of weakly nonlinear inviscid theory and fully nonlinear viscous simulations. J. Atmos. Sci., 59 , 11531165.

    • Search Google Scholar
    • Export Citation
  • Epifanio, C. C., and D. R. Durran, 2002b: Lee-vortex formation in free-slip stratified flow over ridges. Part II: Mechanisms of vorticity and PV formation in nonlinear viscous wakes. J. Atmos. Sci., 59 , 11661181.

    • Search Google Scholar
    • Export Citation
  • Epifanio, C. C., and R. Rotunno, 2005: The dynamics of orographic wake formation in flows with upstream blocking. J. Atmos. Sci., in press.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, National Center for Atmospheric Research, Boulder, CO, 121 pp.

  • Grubišić, V., R. B. Smith, and C. Schär, 1995: The effect of bottom friction of shallow-water flow past an isolated obstacle. J. Atmos. Sci., 52 , 19852005.

    • Search Google Scholar
    • Export Citation
  • Haack, T., S. D. Burk, C. Dorman, and D. Rogers, 2001: Supercritical flow interaction within the Cape Blanco–Cape Mendocino orographic complex. Mon. Wea. Rev., 129 , 688708.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., and M. E. McIntyre, 1987: On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci., 44 , 828841.

    • Search Google Scholar
    • Export Citation
  • Hsie, E-Y., R. A. Anthes, and D. Keyser, 1984: Numerical simulation of frontogenesis in a moist atmosphere. J. Atmos. Sci., 41 , 25812594.

    • Search Google Scholar
    • Export Citation
  • Hubert, L. F., and A. F. Krueger, 1962: Satellite pictures of mesoscale eddies. Mon. Wea. Rev., 90 , 457463.

  • Hunt, C. R., and W. H. Snyder, 1980: Experiments on stably and neutrally stratified flow over a model three dimensional hill. J. Fluid Mech., 96 , 671704.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1990: The step-mountain coordinate: Physical package. Mon. Wea. Rev., 118 , 14291443.

  • Janjić, Z. I., 1994: The step-mountain Eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122 , 927945.

    • Search Google Scholar
    • Export Citation
  • Koračin, D., and C. E. Dorman, 2001: Marine atmospheric boundary layer divergence and clouds along California in June 1996. Mon. Wea. Rev., 129 , 20402056.

    • Search Google Scholar
    • Export Citation
  • Kundu, P. K., 1990: Fluid Mechanics. Academic Press, 638 pp.

  • Kuo, Y-H., L. Cheng, and J-W. Bao, 1988: Numerical simulation of the 1981 Sichuan flood. Part I: Evolution of a mesoscale southwest vortex. Mon. Wea. Rev., 116 , 24812504.

    • Search Google Scholar
    • Export Citation
  • McKendry, I. G., and C. G. Revell, 1992: Mesoscale eddy development over south Auckland—A case study. Wea. Forecasting, 7 , 134142.

  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20 , 851875.

    • Search Google Scholar
    • Export Citation
  • Pan, H. L., and L. Mahrt, 1987: Interaction between soil hydrology and boundary-layer development. Bound.-Layer Meteor., 38 , 185202.

  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. Springer-Verlag, 710 pp.

  • Pielke, R. A., and M. Segal, 1986: Mesoscale circulations forced by differential terrain heating. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 516–548.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R. V., and P. K. Smolarkiewicz, 1991: Further results on lee vortices in low-Froude-number flow. J. Atmos. Sci., 48 , 22042211.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R. V., V. Grubišić, and P. K. Smolakiewicz, 1999: Vorticity and potential vorticity in mountains wakes. J. Atmos. Sci., 56 , 27962810.

    • Search Google Scholar
    • Export Citation
  • Schär, C., and R. B. Smith, 1993a: Shallow-water flow past isolated topography. Part I: Vorticity production and wake formation. J. Atmos. Sci., 50 , 13731400.

    • Search Google Scholar
    • Export Citation
  • Schär, C., and R. B. Smith, 1993b: Shallow-water flow past isolated topography. Part II: Transition to vortex shedding. J. Atmos. Sci., 50 , 14011412.

    • Search Google Scholar
    • Export Citation
  • Schär, C., and D. R. Durran, 1997: Vortex formation and vortex shedding in continuously stratified flow past isolated topography. J. Atmos. Sci., 54 , 534554.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., R. Rotunno, and J. B. Klemp, 2002: Catalina eddies and coastally trapped disturbances. J. Atmos. Sci., 59 , 22702278.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and R. Rotunno, 1989a: Low Froude number flow past three-dimensional obstacles. Part I: Baroclinically generated lee vortices. J. Atmos. Sci., 46 , 11541164.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and R. Rotunno, 1989b: Reply. J. Atmos. Sci., 46 , 36143617.

  • Smolarkiewicz, P. K., R. M. Rasmussen, and T. L. Clark, 1988: On the dynamics of Hawaiian cloud bands: Island forcing. J. Atmos. Sci., 45 , 18721905.

    • Search Google Scholar
    • Export Citation
  • Snyder, W. H., R. S. Thompson, and R. E. Eskridge, 1985: The nature of strongly stratified flow over hills: Dividing streamline concept. J. Fluid Mech., 152 , 249288.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 1978: Radiation profiles in extended water clouds. II: Parameterization schemes. J. Atmos. Sci., 35 , 21232132.

  • Sun, W-Y., and J-D. Chern, 1993: Diurnal variation of lee vortices in Taiwan and the surrounding area. J. Atmos. Sci., 50 , 34043430.

  • Sun, W-Y., and J-D. Chern, 1994: Numerical experiments of vortices in the wakes of large idealized mountains. J. Atmos. Sci., 51 , 191209.

    • Search Google Scholar
    • Export Citation
  • Vosper, S. B., 2000: Three-dimensional numerical simulations of strongly stratified flow past conical orography. J. Atmos. Sci., 57 , 37163739.

    • Search Google Scholar
    • Export Citation
  • Wilczak, J. M., and J. W. Glendening, 1988: Observations and mixed-layer modeling of a terrain-induced mesoscale gyre: The Denver Cyclone. Mon. Wea. Rev., 116 , 15991622.

    • Search Google Scholar
    • Export Citation
  • Wilczak, J. M., W. F. Dabberdt, and R. A. Kropfli, 1991: Observations and numerical-model simulations of the atmospheric boundary layer in the Santa Barbara coastal region. J. Appl. Meteor., 30 , 652673.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2 2 2
PDF Downloads 1 1 1

The Santa Cruz Eddy. Part II: Mechanisms of Formation

View More View Less
  • 1 Stanford University, Stanford, California
Restricted access

Abstract

The formation mechanism of the Santa Cruz eddy (SCE) is investigated using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5). Simulations of 25–26 August 2000 showed that two eddy instances formed on that night, a finding supported by observations. The two eddies had similar behavior: they both formed in the sheltered Santa Cruz, California, area and then moved southeastward, to finally dissipate after 7–11 h. However, the first eddy had greater vorticity, wind speed, horizontal and vertical extents, and lifetime than the second eddy. Numerical simulations showed that the SCEs are formed by the interaction of the main northwesterly flow with the topographic barrier represented by the Santa Cruz Mountains to the north of Monterey Bay. Additional numerical experiments were undertaken with no diurnal heating cycle, no (molecular or eddy) viscosity, and no horizontal thermal gradients at ground level. In all cases, vertical vorticity was still created by the tilting of horizontal vorticity generated by the solenoidal term in the vorticity equation. This baroclinic process appeared to be the fundamental formation mechanism for both SCEs, but more favorable conditions in the late afternoon (including a south-to-north pressure gradient, flow turning due to the sea breeze, and an expansion fan) coincided to intensify the first eddy.

Corresponding author address: Cristina L. Archer, Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305. Email: lozej@stanford.edu

Abstract

The formation mechanism of the Santa Cruz eddy (SCE) is investigated using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5). Simulations of 25–26 August 2000 showed that two eddy instances formed on that night, a finding supported by observations. The two eddies had similar behavior: they both formed in the sheltered Santa Cruz, California, area and then moved southeastward, to finally dissipate after 7–11 h. However, the first eddy had greater vorticity, wind speed, horizontal and vertical extents, and lifetime than the second eddy. Numerical simulations showed that the SCEs are formed by the interaction of the main northwesterly flow with the topographic barrier represented by the Santa Cruz Mountains to the north of Monterey Bay. Additional numerical experiments were undertaken with no diurnal heating cycle, no (molecular or eddy) viscosity, and no horizontal thermal gradients at ground level. In all cases, vertical vorticity was still created by the tilting of horizontal vorticity generated by the solenoidal term in the vorticity equation. This baroclinic process appeared to be the fundamental formation mechanism for both SCEs, but more favorable conditions in the late afternoon (including a south-to-north pressure gradient, flow turning due to the sea breeze, and an expansion fan) coincided to intensify the first eddy.

Corresponding author address: Cristina L. Archer, Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305. Email: lozej@stanford.edu

Save