• Bluestein, H. B., and F. D. Marks Jr., 1987: On the structure of the eyewall of Hurricane Diaana (1984): Comparison of radar and visual characteristics. Mon. Wea. Rev., 115 , 25422552.

    • Search Google Scholar
    • Export Citation
  • Callaghan, J., and R. K. Smith, 1998: The relationship between maximum surface wind speeds and central pressure in tropical cyclones. Aust. Meteor. Mag., 47 , 191202.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., and R. T. Williams, 1987: Analytical and numerical studies of the beta-effect in tropic cyclone motion. Part I: Zero mean flow. J. Atmos. Sci., 44 , 12571265.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., S. D. Aberson, K. V. Ooyama, and S. J. Lord, 1992: A nested spectral model for hurricane track forecasting. Mon. Wea. Rev., 120 , 16281643.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A., and M. Lystad, 1977: The Ekman layer of a circular vortex: A numerical and theoretical study. Geophys. Norvegica, 31 , 116.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1984: A composite analysis of the core of a mature hurricane. Mon. Wea. Rev., 112 , 24012420.

  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129 , 22492269.

    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., M. L. Black, and K. Valde, 2003: GPS dropwindsonde wind profiles in hurricanes and their operational implications. Wea. Forecasting, 18 , 3244.

    • Search Google Scholar
    • Export Citation
  • Harper, B. A., K. F. Lovell, B. D. Chandler, and D. J. Todd, 1989: The derivation of environmental design criteria for Goodwyn A platform. Proc. Ninth Aust. Conf. on Coastal and Ocean Engineering, Adelaide, Australia, Institute of Engineers Australia, 364–368.

  • Harper, B. A., L. B. Mason, and L. Bode, 1993: Tropical Cyclone Orson—A severe test for modelling. Proc. 11th Aust. Conf. on Coastal and Ocean Engineering, Townsville, Australia, Institute of Engineers Australia, 59–64.

  • Hawkins, H. F., and D. T. Rubsam, 1968: Hurricane Hilda, 1964. II. Structure and budgets of the hurricane on October 1, 1964. Mon. Wea. Rev., 96 , 617636.

    • Search Google Scholar
    • Export Citation
  • Hock, T. F., and J. L. Franklin, 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc., 80 , 407420.

  • Holland, G. J., 1980: An analytic model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev., 108 , 12121218.

  • Hurricane Research Division, 2002: 2002 Hurricane Field Program Plan. NOAA/AOML, 131 pp. [Available from NOAA/AOML/Hurricane Research Division, 4301 Rickenbacker Causeway, Miami FL 33149.].

  • Jones, S. C., 1995: The evolution of vortices in vertical shear. Part I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121 , 821851.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 2004: On the ability of dry tropical-cyclone-like vortices to withstand vertical shear. J. Atmos. Sci., 61 , 114119.

  • Kepert, J. D., 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part I: Linear theory. J. Atmos. Sci., 58 , 24692484.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2002: The wind-field structure of the tropical cyclone boundary-layer. Ph.D. thesis, Monash University, Melbourne, Australia, 350 pp.

  • Kepert, J. D., and Y. Wang, 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear enhancement. J. Atmos. Sci., 58 , 24852501.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and M. D. Eastin, 2001: Two distinct regimes in the kinematic and thermodynamic structure of the hurricane eye and eyewall. J. Atmos. Sci., 58 , 10791090.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and W. H. Schubert, 2001: Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci., 58 , 21962209.

    • Search Google Scholar
    • Export Citation
  • Krueger, D. W., 1959: A relation between the mass circulation through hurricanes and their intensity. Bull. Amer. Meteor. Soc., 40 , 182189.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., and O. Hammon, 1988: Objective quality control of observations using Bayesian methods: Theory, and a practical implementation. Quart. J. Roy. Meteor. Soc., 114 , 515543.

    • Search Google Scholar
    • Export Citation
  • Mallett, W. A., 2000: The dynamics of the atmospheric boundary layer of a mature tropical cyclone: A numerical investigation. Ph.D. thesis, James Cook University, Australia, 266 pp.

  • Marks, F. D., R. A. Houze, and J. F. Gamache, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part I: Kinematic structure. J. Atmos. Sci., 49 , 919942.

    • Search Google Scholar
    • Export Citation
  • Nelder, J. A., and R. Mead, 1965: A simplex method for function minimisation. Comput. J., 7 , 308313.

  • Pasch, R. J., L. A. Avila, and J. L. Guiney, 2001: Atlantic hurricane season of 1998. Mon. Wea. Rev., 129 , 30853123.

  • Powell, M. D., 1982: The transition of the Hurricane Frederic boundary-layer wind fields from the open Gulf of Mexico to landfall. Mon. Wea. Rev., 110 , 19121932.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422 , 279283.

    • Search Google Scholar
    • Export Citation
  • Press, W. H., S. A. Teukolsky, W. Y. Vetterling, and B. P. Flannery, 1992: Numerical Recipes in C. Cambridge University Press, 994 pp.

  • Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61 , 322.

    • Search Google Scholar
    • Export Citation
  • Schloemer, R. W., 1954: Analysis and synthesis of hurricane wind patterns of Lake Okechobee, Florida. Hydrometeorological Rep. 31, U.S. Government Printing Office, 49 pp.

  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56 , 11971223.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1983: The asymmetric boundary layer under a translating hurricane. J. Atmos. Sci., 40 , 19841998.

  • Wang, Y., and G. J. Holland, 1996: Tropical cyclone motion and evolution in vertical shear. J. Atmos. Sci., 53 , 33133332.

  • Weatherford, C. L., and W. M. Gray, 1988a: Typhoon structure as revealed by aircraft reconnaissance. Part I: Data analysis and climatology. Mon. Wea. Rev., 116 , 10321043.

    • Search Google Scholar
    • Export Citation
  • Weatherford, C. L., and W. M. Gray, 1988b: Typhoon structure as revealed by aircraft reconnaissance. Part II: Structural variability. Mon. Wea. Rev., 116 , 10441056.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 2002: A new parametric model of hurricane wind profiles. Extended Abstracts, 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 553–554.

  • Willoughby, H. E., and M. Chelmow, 1982: Objective determination of hurricane tracks from aircraft observations. Mon. Wea. Rev., 110 , 12981305.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., and M. E. Rahn, 2004: Parametric representation of the primary hurricane vortex. Part I: Observations and evaluation of the Holland (1980) model. Mon. Wea. Rev., 132 , 30333048.

    • Search Google Scholar
    • Export Citation
  • Zhang, D-L., Y. Liu, and M. K. Yau, 2001: A multiscale numerical study of Hurricane Andrew (1992). Part IV: Unbalanced flows. Mon. Wea. Rev., 129 , 92107.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1 1 1
PDF Downloads 3 3 3

Objective Analysis of Tropical Cyclone Location and Motion from High-Density Observations

View More View Less
  • 1 Bureau of Meteorology Research Centre, Melbourne, Victoria, Australia
Restricted access

Abstract

A new technique for objectively locating the pressure center of a hurricane from high-density observations is presented. It was designed particularly for use with global positioning system (GPS) dropsonde observations of pressure within the cyclone core, but is also useful for aircraft data. Unlike previously documented techniques, it uses pressure data rather than wind, and is therefore useable in the boundary layer. A further advantage is that it can utilize data taken over a period of several hours, while previous techniques required the use of nearly instantaneous data. It is shown that, for data coverage typical of research aircraft missions, the technique can locate the cyclone center with a root-mean-square error of a few kilometers, and the cyclone motion with a root-mean-square error of a few tenths of a meter per second. The application of an automated objective quality control procedure to the method is also discussed.

Corresponding author address: Dr. Jeffrey D. Kepert, Bureau of Meteorology Research Centre, GPO Box 1289 K, Melbourne 3000 Victoria, Australia. Email: J.Kepert@bom.gov.au

Abstract

A new technique for objectively locating the pressure center of a hurricane from high-density observations is presented. It was designed particularly for use with global positioning system (GPS) dropsonde observations of pressure within the cyclone core, but is also useful for aircraft data. Unlike previously documented techniques, it uses pressure data rather than wind, and is therefore useable in the boundary layer. A further advantage is that it can utilize data taken over a period of several hours, while previous techniques required the use of nearly instantaneous data. It is shown that, for data coverage typical of research aircraft missions, the technique can locate the cyclone center with a root-mean-square error of a few kilometers, and the cyclone motion with a root-mean-square error of a few tenths of a meter per second. The application of an automated objective quality control procedure to the method is also discussed.

Corresponding author address: Dr. Jeffrey D. Kepert, Bureau of Meteorology Research Centre, GPO Box 1289 K, Melbourne 3000 Victoria, Australia. Email: J.Kepert@bom.gov.au

Save