• Alpert, P., and M. Rabinovich-Hadar, 2003: Pre- and post-sea-breeze frontal lines—A meso-γ-scale analysis over south Israel. J. Atmos. Sci., 60 , 29943008.

    • Search Google Scholar
    • Export Citation
  • AMS, 1952: Symposium on Coordinating Meteorological Research and Weather Forecasting. Bull. Amer. Meteor. Soc., 33 , 355364.

  • Berry Jr, F. A., E. Bollay, and N. R. Beers, 1945: Handbook of Meteorology. McGraw-Hill, 1068 pp.

  • Bjerknes, J., 1919: On the structure of moving cyclones. Geofys. Publ., 1 , 2,. 18.

  • Bjerknes, J., 1926: The structure of fronts. Meteor. Mag., 61 , 3233.

  • Bjerknes, J., 1930: Practical examples of polar-front analysis over the British Isles in 1925–6. Geophys. Mem., 5 .(10), 1–21 and 28 pp. of figs.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 1992: Principles of Kinematics and Dynamics. Vol. 1, Synoptic–Dynamic Meteorology in Midlatitudes. Oxford University Press, 431 pp.

  • Bluestein, H. B., 1993: Observations and Theory of Weather Systems. Vol. 2, Synoptic–Dynamic Meteorology in Midlatitudes. Oxford University Press, 594 pp.

  • Blumen, W., 1997: A model of inertial oscillations with deformation frontogenesis. J. Atmos. Sci., 54 , 26812692.

  • Bond, N. A., and R. G. Fleagle, 1985: Structure of a cold front over the ocean. Quart. J. Roy. Meteor. Soc., 111 , 739759.

  • Bosart, L. F., 2003: Whither the weather analysis and forecasting process? Wea. Forecasting, 18 , 520529.

  • Browning, K. A., 1990: Organization of clouds and precipitation in extratropical cyclones. Extratropical Cyclones, The Erik Palmén Memorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 129–153.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., N. M. Roberts, and A. J. Illingworth, 1997: Mesoscale analysis of the activation of a cold front during cyclogenesis. Quart. J. Roy. Meteor. Soc., 123 , 23492375.

    • Search Google Scholar
    • Export Citation
  • Brunt, D., 1934: Physical and Dynamical Meteorology. Cambridge University Press, 411 pp.

  • Bryan, G. H., and J. M. Fritsch, 2000a: Discrete propagation of surface fronts in a convective environment: Observations and theory. J. Atmos. Sci., 57 , 20412060.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2000b: Diabatically driven discrete propagation of surface fronts: A numerical analysis. J. Atmos. Sci., 57 , 20612079.

    • Search Google Scholar
    • Export Citation
  • Bureau of Meteorology, 1984: Report on the meteorological aspects of the Ash Wednesday fires—16 February 1983. Aust. Govt. Pub. Serv., Canberra, Australia, 143 pp.

  • Carlson, T. N., 1980: Airflow through midlatitude cyclones and the comma cloud pattern. Mon. Wea. Rev., 108 , 14981509.

  • Carlson, T. N., 1991: Mid-Latitude Weather Systems. Harper Collins, 507 pp.

  • Charba, J., 1974: Application of gravity current model to analysis of squall-line gust front. Mon. Wea. Rev., 102 , 140156.

  • Charney, J. J., and J. M. Fritsch, 1999: Discrete frontal propagation in a nonconvective environment. Mon. Wea. Rev., 127 , 20832101.

  • Chen, C., and C. Bishop, 1999: Reply. Mon. Wea. Rev., 127 , 258263.

  • Civilian Staff, 1945: Southern Hemisphere synoptic meteorology. Handbook of Meteorology, F. A. Berry, Jr., E. Bollay, and N. R. Beers, Eds., McGraw-Hill, 804–812.

    • Search Google Scholar
    • Export Citation
  • Cohen, R. A., and C. W. Kreitzberg, 1997: Airstream boundaries in numerical weather simulations. Mon. Wea. Rev., 125 , 168183.

  • Cohen, R. A., and D. M. Schultz, 2005: Contraction rate and its relationship to frontogenesis, the Lyapunov exponent, fluid trapping, and airstream boundaries. Mon. Wea. Rev., 133 , 13531369.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., and C. F. Mass, 1995: The structure and evolution of cold surges east of the Rocky Mountains. Mon. Wea. Rev., 123 , 25772610.

    • Search Google Scholar
    • Export Citation
  • Cunningham, P., and D. Keyser, 1999: Frontogenesis and frontal motion due to confluent deformation with a translating dilatation axis. Quart. J. Roy. Meteor. Soc., 125 , 25632573.

    • Search Google Scholar
    • Export Citation
  • Davies, H. C., and J. C. Müller, 1988: Detailed description of deformation-induced semi-geostrophic frontogenesis. Quart. J. Roy. Meteor. Soc., 114 , 12011219.

    • Search Google Scholar
    • Export Citation
  • Deslandes, R., M. J. Reeder, and G. Mills, 1999: Synoptic analyses of a subtropical cold front observed during the 1991 Central Australian Fronts Experiment. Aust. Meteor. Mag., 48 , 87110.

    • Search Google Scholar
    • Export Citation
  • Dickinson, M. J., and D. J. Knight, 1999: Frontal interaction with mesoscale topography. J. Atmos. Sci., 56 , 35443559.

  • Dorian, P. B., S. E. Koch, and W. C. Skillman, 1988: The relationship between satellite-inferred frontogenesis and squall line formation. Wea. Forecasting, 3 , 319342.

    • Search Google Scholar
    • Export Citation
  • Doswell III, C. A., 1986: The human element in weather forecasting. Natl. Wea. Dig., 11 , 2,. 617.

  • Doswell III, C. A., 2004: Weather forecasting by humans—Heuristics and decision making. Wea. Forecasting, 19 , 11151126.

  • Doswell III, C. A., L. R. Lemon, and R. A. Maddox, 1981: Forecaster training—A review and analysis. Bull. Amer. Meteor. Soc., 62 , 983988.

    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., and R. B. Wilhelmson, 1987: Numerical simulation of thunderstorm outflow dynamics. Part I: Outflow sensitivity experiments and turbulence dynamics. J. Atmos. Sci., 44 , 11801210.

    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1 , 3,. 3352.

  • Emanuel, K. A., 1985a: What limits front formation? Nature, 315 , 99.

  • Emanuel, K. A., 1985b: Frontal circulations in the presence of small moist symmetric stability. J. Atmos. Sci., 42 , 10621071.

  • Fandry, C. B., and L. M. Leslie, 1984: A two-layer quasi-geostrophic model of summer trough formation in the Australian subtropical easterlies. J. Atmos. Sci., 41 , 807818.

    • Search Google Scholar
    • Export Citation
  • Flower, W. D., 1931: An analysis of the cold front over Egypt on March 7, 1929. Quart. J. Roy. Meteor. Soc., 57 , 275287.

  • Friedman, R. M., 1989: Appropriating the Weather: Vilhelm Bjerknes and the Construction of a Modern Meteorology. Cornell University Press, 251 pp.

    • Search Google Scholar
    • Export Citation
  • Fujita, T., 1959: Precipitation and cold air production in mesoscale thunderstorm systems. J. Meteor., 16 , 454466.

  • Fulks, J. R., 1951: The instability line. Compendium of Meteorology, T. F. Malone, Ed., Amer. Meteor. Soc., 647–652.

  • Gall, R. L., R. T. Williams, and T. L. Clark, 1987: On the minimum scale of surface fronts. J. Atmos. Sci., 44 , 25622574.

  • Garner, S. T., 1989a: Fully Lagrangian numerical solutions of unbalanced frontogenesis and frontal collapse. J. Atmos. Sci., 46 , 717739.

    • Search Google Scholar
    • Export Citation
  • Garner, S. T., 1989b: Comments on “On a theory of the evolution of surface cold fronts.”. J. Atmos. Sci., 46 , 18721873.

  • Garratt, J. R., 1988: Summertime cold fronts in southeast Australia—Behavior and low-level structure of main frontal types. Mon. Wea. Rev., 116 , 636649.

    • Search Google Scholar
    • Export Citation
  • Geisler, J. E., and F. P. Bretherton, 1969: The sea-breeze forerunner. J. Atmos. Sci., 26 , 8295.

  • Giblett, M. A., 1927: Line-squalls. J. Roy. Aero. Soc., 31 , 509549.

  • Gidel, L. T., 1978: Simulation of the differences and similarities of warm and cold surface frontogenesis. J. Geophys. Res., 83 , 915928.

    • Search Google Scholar
    • Export Citation
  • Godson, W. L., 1951: Synoptic properties of frontal surfaces. Quart. J. Roy. Meteor. Soc., 77 , 633653.

  • Goff, R. C., 1976: Vertical structure of thunderstorm outflows. Mon. Wea. Rev., 104 , 14291440.

  • Gold, E., 1935: Fronts and occlusions. Quart. J. Roy. Meteor. Soc., 61 , 107157.

  • Haase, S. P., and R. K. Smith, 1984: Morning glory wave clouds in Oklahoma: A case study. Mon. Wea. Rev., 112 , 20782089.

  • Haertel, P. T., R. H. Johnson, and S. N. Tulich, 2001: Some simple simulations of thunderstorm outflows. J. Atmos. Sci., 58 , 504516.

  • Hanstrum, B. N., K. J. Wilson, and S. L. Barrell, 1990a: Prefrontal troughs over southern Australia. Part I: A climatology. Wea. Forecasting, 5 , 2231.

    • Search Google Scholar
    • Export Citation
  • Hanstrum, B. N., K. J. Wilson, and S. L. Barrell, 1990b: Prefrontal troughs over southern Australia. Part II: A case study of frontogenesis. Wea. Forecasting, 5 , 3246.

    • Search Google Scholar
    • Export Citation
  • Heimann, D., 1990: Three-dimensional modeling of synthetic cold fronts approaching the Alps. Meteor. Atmos. Phys., 42 , 197219.

  • Hobbs, P. V., T. J. Matejka, P. H. Herzegh, J. D. Locatelli, and R. A. Houze Jr., 1980: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. I: A case study of a cold front. J. Atmos. Sci., 37 , 568596.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., J. D. Locatelli, and J. E. Martin, 1996: A new conceptual model for cyclones generated in the lee of the Rocky Mountains. Bull. Amer. Meteor. Soc., 77 , 11691178.

    • Search Google Scholar
    • Export Citation
  • Hoffman, E. G., 1995: Evolution and mesoscale structure of fronts in the western United States: A case study. M.S. thesis, Department of Atmospheric Science, The University at Albany, State University of New York, 287 pp. [Available from Department of Earth and Atmospheric Sciences, The University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222.].

  • Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29 , 1137.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., E. Caetano Neto, and H-R. Cho, 1984: The formation of multiple fronts. Quart. J. Roy. Meteor. Soc., 110 , 881896.

  • House, D. C., 1959: The mechanics of instability-line formation. J. Meteor., 16 , 108120.

  • Hoxit, L. R., C. F. Chappell, and J. M. Fritsch, 1976: Formation of mesolows or pressure troughs in advance of cumulonimbus clouds. Mon. Wea. Rev., 104 , 14191428.

    • Search Google Scholar
    • Export Citation
  • Hsie, E-Y., R. A. Anthes, and D. Keyser, 1984: Numerical simulation of frontogenesis in a moist atmosphere. J. Atmos. Sci., 41 , 25812594.

    • Search Google Scholar
    • Export Citation
  • Hutchinson, T. A., and H. B. Bluestein, 1998: Prefrontal wind-shift lines in the plains of the United States. Mon. Wea. Rev., 126 , 141166.

    • Search Google Scholar
    • Export Citation
  • Idso, S. B., R. S. Ingram, and J. M. Pritchard, 1972: An American haboob. Bull. Amer. Meteor. Soc., 53 , 930935.

  • Karyampudi, V. M., S. E. Koch, C. Chen, J. W. Rottman, and M. L. Kaplan, 1995: The influence of the Rocky Mountains on the 13–14 April 1986 severe weather outbreak. Part II: Evolution of a prefrontal bore and its role in triggering a squall line. Mon. Wea. Rev., 123 , 14231446.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., and R. K. Smith, 1992: A simple model of the Australian west coast trough. Mon. Wea. Rev., 120 , 20422055.

  • Keshishian, L. G., L. F. Bosart, and W. E. Bracken, 1994: Inverted troughs and cyclogenesis over interior North America: A limited regional climatology and case studies. Mon. Wea. Rev., 122 , 565607.

    • Search Google Scholar
    • Export Citation
  • Keuler, K., J. Kerkmann, H. Kraus, and E. Schaller, 1992: Orographical modification and large scale forcing of a cold front. Meteor. Atmos. Phys., 48 , 105130.

    • Search Google Scholar
    • Export Citation
  • Keyser, D., 1986: Atmospheric fronts: An observational perspective. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 216–258.

    • Search Google Scholar
    • Export Citation
  • Keyser, D., 1999: On the representation and diagnosis of frontal circulations in two and three dimensions. The Life Cycles of Extratropical Cyclones, M. A. Shapiro and S. Grønås, Eds., Amer. Meteor. Soc., 239–264.

    • Search Google Scholar
    • Export Citation
  • Keyser, D., and M. J. Pecnick, 1987: The effect of along-front temperature variation in a two-dimensional primitive equation model of surface frontogenesis. J. Atmos. Sci., 44 , 577604.

    • Search Google Scholar
    • Export Citation
  • Keyser, D., M. J. Reeder, and R. J. Reed, 1988: A generalization of Petterssen’s frontogenesis function and its relation to the forcing of vertical motion. Mon. Wea. Rev., 116 , 762780.

    • Search Google Scholar
    • Export Citation
  • Kobayasi, T., 1923: On the mechanism of cyclones and anticyclones. Quart. J. Roy. Meteor. Soc., 49 , 177189.

  • Koch, S. E., 2001: Real-time detection of split fronts using mesoscale models and WSR-88D radar products. Wea. Forecasting, 16 , 3555.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and J. McCarthy, 1982: The evolution of an Oklahoma dryline. Part II: Boundary-layer forcing of meso-convective systems. J. Atmos. Sci., 39 , 237257.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and W. L. Clark, 1999: A nonclassical cold front observed during COPS-91: Frontal structure and the process of severe storm initiation. J. Atmos. Sci., 56 , 28622890.

    • Search Google Scholar
    • Export Citation
  • Kraus, H., C. M. Ewenz, M. Kremer, and J. M. Hacker, 2000: The multi-scale structure of the Australian cool changes. Meteor. Atmos. Phys., 73 , 157175.

    • Search Google Scholar
    • Export Citation
  • Lawson, T. J., 1971: Haboob structure at Khartoum. Weather, 26 , 105112.

  • Levy, G., 1989: Surface dynamics of observed maritime fronts. J. Atmos. Sci., 46 , 12191232.

  • Levy, G., and C. S. Bretherton, 1987: On a theory of the evolution of surface cold fronts. J. Atmos. Sci., 44 , 34133418.

  • Ley, B. E., and W. R. Peltier, 1978: Wave generation and frontal collapse. J. Atmos. Sci., 35 , 317.

  • Locatelli, J. D., J. M. Sienkiewicz, and P. V. Hobbs, 1989: Organization and structure of clouds and precipitation on the mid-Atlantic coast of the United States. Part I: Synoptic evolution of a frontal system from the Rockies to the Atlantic Coast. J. Atmos. Sci., 46 , 13271348.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., J. E. Martin, J. A. Castle, and P. V. Hobbs, 1995: Structure and evolution of winter cyclones in the central United States and their effects on the distribution of precipitation. Part III: The development of a squall line associated with weak cold frontogenesis aloft. Mon. Wea. Rev., 123 , 26412662.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., M. T. Stoelinga, R. D. Schwartz, and P. V. Hobbs, 1997: Surface convergence induced by cold fronts aloft and prefrontal surges. Mon. Wea. Rev., 125 , 28082820.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., R. D. Schwartz, M. T. Stoelinga, and P. V. Hobbs, 2002a: Norwegian-type and cold front aloft–type cyclones east of the Rocky Mountains. Wea. Forecasting, 17 , 6682.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., M. T. Stoelinga, and P. V. Hobbs, 2002b: A new look at the super outbreak of tornadoes on 3–4 April 1974. Mon. Wea. Rev., 130 , 16331651.

    • Search Google Scholar
    • Export Citation
  • Mahoney III, W. P., 1988: Gust front characteristics and the kinematics associated with interacting thunderstorm outflows. Mon. Wea. Rev., 116 , 14741491.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., and D. M. Schultz, 1993: The structure and evolution of a simulated midlatitude cyclone over land. Mon. Wea. Rev., 121 , 889917.

    • Search Google Scholar
    • Export Citation
  • Mills, G. A., 2005: A re-examination of the synoptic and mesoscale meteorology of Ash Wednesday 1983. Aust. Meteor. Mag., 54 , 3555.

  • Mitchell, K. E., and J. B. Hovermale, 1977: A numerical investigation of the severe thunderstorm gust front. Mon. Wea. Rev., 105 , 657675.

    • Search Google Scholar
    • Export Citation
  • Mitsuta, Y., T. Hayashi, T. Takemi, Y. Hu, J. Wang, and M. Chen, 1995: Two severe local storms as observed in the arid area of northwest China. J. Meteor. Soc. Japan, 73 , 12691284.

    • Search Google Scholar
    • Export Citation
  • Morris, R. M., 1986: The Spanish plume—Testing the forecaster’s nerve. Meteor. Mag., 115 , 349357.

  • National Research Council, 1998: The Atmospheric Sciences Entering the Twenty-First Century. National Academy Press, 364 pp.

  • National Research Council, 2000: From Research to Operations in Weather Satellites and Numerical Weather Prediction: Crossing the Valley of Death. National Academy Press, 96 pp.

    • Search Google Scholar
    • Export Citation
  • National Research Council, 2003: Satellite Observations of the Earth’s Environment: Accelerating the Transition of Research to Operations. National Academy Press, 182 pp.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., and R. M. Wakimoto, 1999: The interaction of a Pacific cold front with shallow air masses east of the Rocky Mountains. Mon. Wea. Rev., 127 , 21022127.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, M. A. Shapiro, B. F. Smull, and D. Johnson, 1998: An observational study of fronts and frontal mergers over the continental United States. Mon. Wea. Rev., 126 , 25212554.

    • Search Google Scholar
    • Export Citation
  • Newton, C. W., 1950: Structure and mechanism of the prefrontal squall line. J. Meteor., 7 , 210222.

  • Newton, C. W., 1963: Dynamics of severe convective storms. Severe Local Storms, Meteor. Monogr., No. 27, Amer. Meteor. Soc., 33–58.

  • Ogura, Y., and D. Portis, 1982: Structure of the cold front observed in SESAME-AVE III and its comparison with the Hoskins–Bretherton frontogenesis model. J. Atmos. Sci., 39 , 27732792.

    • Search Google Scholar
    • Export Citation
  • Ogura, Y., H-M. Juang, K-S. Zhang, and S-T. Soong, 1982: Possible triggering mechanisms for severe storms in SESAME-AVE IV (9–10 May 1979). Bull. Amer. Meteor. Soc., 63 , 503515.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., and B. B. Ross, 1977: The circulation associated with a cold front. Part I: Dry case. J. Atmos. Sci., 34 , 16191633.

  • Orlanski, I., and B. B. Ross, 1984: The evolution of an observed cold front. Part II: Mesoscale dynamics. J. Atmos. Sci., 41 , 16691703.

    • Search Google Scholar
    • Export Citation
  • Ostdiek, V., and W. Blumen, 1995: Deformation frontogenesis: Observation and theory. J. Atmos. Sci., 52 , 14871500.

  • Ostdiek, V., and W. Blumen, 1997: A dynamic trio: Inertial oscillation, deformation frontogenesis, and the Ekman–Taylor boundary layer. J. Atmos. Sci., 54 , 14901502.

    • Search Google Scholar
    • Export Citation
  • Parker, D. J., 1999: Passage of a tracer through frontal zones: A model for the formation of forward-sloping cold fronts. Quart. J. Roy. Meteor. Soc., 125 , 17851800.

    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., M. A. Shapiro, and E. Miller, 2000: The mesoscale structure of a nocturnal dryline and of a frontal–dryline merger. Mon. Wea. Rev., 128 , 38243838.

    • Search Google Scholar
    • Export Citation
  • Petterssen, S., 1933: Kinematical and dynamical properties of the field of pressure, with application to weather forecasting. Geofys. Publ., 10 , 2,. 192.

    • Search Google Scholar
    • Export Citation
  • Petterssen, S., 1936: Contribution to the theory of frontogenesis. Geofys. Publ., 11 , 6,. 127.

  • Petterssen, S., 1940: Weather Analysis and Forecasting. McGraw-Hill, 505 pp.

  • Petterssen, S., 1956: Motion and Motion Systems. Vol. 1, Weather Analysis and Forecasting, 2d ed., McGraw-Hill, 428 pp.

  • Physick, W. L., 1988: Mesoscale modeling of a cold front and its interaction with a diurnally heated land mass. J. Atmos. Sci., 45 , 31693187.

    • Search Google Scholar
    • Export Citation
  • Pliske, R. M., B. Crandall, and G. Klein, 2004: Competence in weather forecasting. Psychological Investigations of Competence in Decision Making, K. Smith, J. Shanteau, and P. Johnson, Eds., Cambridge University Press, 40–68.

    • Search Google Scholar
    • Export Citation
  • Preissler, M., M. J. Reeder, and R. K. Smith, 2002: A case study of a heat low over central Australia. Aust. Meteor. Mag., 51 , 155163.

    • Search Google Scholar
    • Export Citation
  • Rabin, R. M., D. E. Engles, and J. Koscielny, 1987: Applications of a Doppler radar to diagnose a frontal zone prior to thunderstorms. Mon. Wea. Rev., 115 , 26742686.

    • Search Google Scholar
    • Export Citation
  • Read, R. S., 1925: Cold front: September 1, 1925. Quart. J. Roy. Meteor. Soc., 51 , 416421.

  • Reeder, M. J., 1986: The interaction of a surface cold front with a prefrontal thermodynamically well-mixed boundary layer. Aust. Meteor. Mag., 34 , 137148.

    • Search Google Scholar
    • Export Citation
  • Reeder, M. J., and R. K. Smith, 1986: A comparison between frontogenesis in the two-dimensional Eady model of baroclinic instability and summertime cold fronts in the Australian region. Quart. J. Roy. Meteor. Soc., 112 , 293313.

    • Search Google Scholar
    • Export Citation
  • Reeder, M. J., and R. K. Smith, 1987: A study of frontal dynamics with application to the Australian summertime “cool change.”. J. Atmos. Sci., 44 , 687705.

    • Search Google Scholar
    • Export Citation
  • Reeder, M. J., and R. K. Smith, 1988: On air motion trajectories in cold fronts. J. Atmos. Sci., 45 , 40054007.

  • Reeder, M. J., and R. K. Smith, 1992: Australian spring and summer cold fronts. Aust. Meteor. Mag., 41 , 101124.

  • Reeder, M. J., and R. K. Smith, 1998: Mesoscale meteorology. Meteorology of the Southern Hemisphere, Meteor. Monogr., No. 49, Amer. Meteor. Soc., 201–241.

  • Reeder, M. J., D. Keyser, and B. D. Schmidt, 1991: Three-dimensional baroclinic instability and summertime frontogenesis in the Australian region. Quart. J. Roy. Meteor. Soc., 117 , 128.

    • Search Google Scholar
    • Export Citation
  • Reeves, H. D., and G. M. Lackmann, 2004: An investigation of the influence of latent heat release on cold-frontal motion. Mon. Wea. Rev., 132 , 28642881.

    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., D. M. Schultz, B. A. Colle, and D. J. Stensrud, 2004: Toward improved prediction: High-resolution and ensemble modeling systems in operations. Wea. Forecasting, 19 , 936949.

    • Search Google Scholar
    • Export Citation
  • Rose, S. F., P. V. Hobbs, J. D. Locatelli, and M. T. Stoelinga, 2002: Use of a mesoscale model to forecast severe weather associated with a cold front aloft. Wea. Forecasting, 17 , 755773.

    • Search Google Scholar
    • Export Citation
  • Rose, S. F., P. V. Hobbs, J. D. Locatelli, and M. T. Stoelinga, 2003: Reply. Wea. Forecasting, 18 , 389391.

  • Ross, B. B., and I. Orlanski, 1982: The evolution of an observed cold front. Part I. Numerical simulation. J. Atmos. Sci., 39 , 296327.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., 1989: A severe frontal rainband. Part IV: Precipitation mechanisms, diabatic processes and rainband maintenance. J. Atmos. Sci., 46 , 35703594.

    • Search Google Scholar
    • Export Citation
  • Ryan, B. F., and K. J. Wilson, 1985: The Australian summertime cool change. Part III: Subsynoptic and mesoscale model. Mon. Wea. Rev., 113 , 224240.

    • Search Google Scholar
    • Export Citation
  • Ryan, B. F., K. J. Wilson, and E. J. Zipser, 1989: Modification of the thermodynamic structure of the lower troposphere by the evaporation of precipitation ahead of a cold front. Mon. Wea. Rev., 117 , 138153.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., 1955: An investigation of the structure and dynamics of an intense surface frontal zone. J. Meteor., 12 , 542552.

  • Sanders, F., 1967: Frontal structure and the dynamics of frontogenesis. Final Report to the National Science Foundation, Grant GP-1508, 10 pp. with 10 appendixes.

  • Sanders, F., 1971: Analytic solutions of the nonlinear omega and vorticity equations for a structurally simple model of disturbances in the baroclinic westerlies. Mon. Wea. Rev., 99 , 393407.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., 1983: Observations of fronts. Mesoscale Meteorology—Theories, Observations and Models, D. K. Lilly and T. Gal-Chen, Eds., Reidel, 175–203.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., 1999a: A proposed method of surface map analysis. Mon. Wea. Rev., 127 , 945955.

  • Sanders, F., 1999b: A short-lived cold front in the southwestern United States. Mon. Wea. Rev., 127 , 23952403.

  • Sanders, F., and C. A. Doswell III, 1995: A case for detailed surface analysis. Bull. Amer. Meteor. Soc., 76 , 505521.

  • Saucier, W. J., 1955: Principles of Meteorological Analysis. University of Chicago Press, 438 pp.

  • Sawyer, J. S., 1946: Cooling by rain as a cause of the pressure rise in convectional squalls. Quart. J. Roy. Meteor. Soc., 72 , 168.

  • Schaefer, J. T., 1986: The dryline. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 549–572.

  • Schultz, D. M., 2004: Cold fronts with and without prefrontal wind shifts in the central United States. Mon. Wea. Rev., 132 , 20402053.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and W. J. Steenburgh, 1999: The formation of a forward-tilting cold front with multiple cloud bands during Superstorm 1993. Mon. Wea. Rev., 127 , 11081124.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and C. A. Doswell III, 2000: Analyzing and forecasting Rocky Mountain lee cyclogenesis often associated with strong winds. Wea. Forecasting, 15 , 152173.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and R. J. Trapp, 2003: Nonclassical cold-frontal structure caused by dry subcloud air in northern Utah during the Intermountain Precipitation Experiment (IPEX). Mon. Wea. Rev., 131 , 22222246.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., W. E. Bracken, L. F. Bosart, G. J. Hakim, M. A. Bedrick, M. J. Dickinson, and K. R. Tyle, 1997: The 1993 Superstorm cold surge: Frontal structure, gap flow, and tropical impact. Mon. Wea. Rev., 125, 5–39; Corrigenda, 125, 662.

    • Search Google Scholar
    • Export Citation
  • Seitter, K. L., and H. S. Muench, 1985: Observation of a cold front with rope cloud. Mon. Wea. Rev., 113 , 840848.

  • Serafin, R. J., A. E. MacDonald, and R. L. Gall, 2002: Transition of weather research to operations: Opportunities and challenges. Bull. Amer. Meteor. Soc., 83 , 377392.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., 1982: Mesoscale weather systems of the central United States. CIRES/NOAA Tech. Rep., University of Colorado, 78 pp. [Available from Cooperative Institute for Research in Environmental Sciences, University of Colorado/NOAA, Boulder, CO 80309.].

  • Shapiro, M. A., 1984: Meteorological tower measurements of a surface cold front. Mon. Wea. Rev., 112 , 16341639.

  • Simpson, J. E., 1972: Effects of the lower boundary on the head of a gravity current. J. Fluid. Mech., 53 , 759768.

  • Skinner, T. C. L., and L. M. Leslie, 1999: Numerical prediction of the summertime ridge–trough system over northeastern Australia. Wea. Forecasting, 14 , 306325.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. J. Reeder, 1988: On the movement and low-level structure of cold fronts. Mon. Wea. Rev., 116 , 19271944.

  • Smith, R. K., M. J. Reeder, N. J. Tapper, and D. R. Christie, 1995: Central Australian cold fronts. Mon. Wea. Rev., 123 , 1638.

  • Snyder, C., W. C. Skamarock, and R. Rotunno, 1993: Frontal dynamics near and following frontal collapse. J. Atmos. Sci., 50 , 31943211.

    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., and C. F. Mass, 1994: The structure and evolution of a simulated Rocky Mountain lee trough. Mon. Wea. Rev., 122 , 27402761.

    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., J. D. Locatelli, and P. V. Hobbs, 2000: Structure and evolution of winter cyclones in the central United States and their effects on the distribution of precipitation. Part VI: A mesoscale modeling study of the initiation of convective rainbands. Mon. Wea. Rev., 128 , 34813500.

    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., J. D. Locatelli, and P. V. Hobbs, 2002: Warm occlusions, cold occlusions, and forward-tilting cold fronts. Bull. Amer. Meteor. Soc., 83 , 709721.

    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., J. D. Locatelli, R. D. Schwartz, and P. V. Hobbs, 2003: Is a cold pool necessary for the maintenance of a squall line produced by a cold front aloft? Mon. Wea. Rev., 131 , 95115.

    • Search Google Scholar
    • Export Citation
  • Stokes, D. E., 1997: Pasteur’s Quadrant: Basic Science and Technological Innovation. Brookings Institution Press, 180 pp.

  • Takemi, T., 1999: Structure and evolution of a severe squall line over the arid region in northwest China. Mon. Wea. Rev., 127 , 13011309.

    • Search Google Scholar
    • Export Citation
  • Taljaard, J. J., 1972: Synoptic meteorology of the Southern Hemisphere. Meteorology of the Southern Hemisphere, Meteor. Monogr., No. 35, Amer. Meteor. Soc., 139–213.

    • Search Google Scholar
    • Export Citation
  • Taljaard, J. J., W. Schmitt, and H. van Loon, 1961: Frontal analysis with application to the Southern Hemisphere. Notos, 10 , 2558.

  • Taylor, P. A., J. R. Salmon, and R. E. Stewart, 1993: Mesoscale observations of surface fronts and low pressure centres in Canadian east coast winter storms. Bound.-Layer Meteor., 64 , 1554.

    • Search Google Scholar
    • Export Citation
  • Tepper, M., 1950: A proposed mechanism of squall lines: The pressure jump line. J. Meteor., 7 , 2129.

  • Thompson, W. T., and R. T. Williams, 1997: Numerical simulations of maritime frontogenesis. J. Atmos. Sci., 54 , 314331.

  • Troup, A. J., 1956: An aerological study of the “meridional front” in western Australia. Aust. Meteor. Mag., 14 , 122.

  • Uccellini, L. W., 1980: On the role of upper tropospheric jet streaks and leeside cyclogenesis in the development of low-level jets in the Great Plains. Mon. Wea. Rev., 108 , 16891696.

    • Search Google Scholar
    • Export Citation
  • van Delden, A., 1998: The synoptic setting of a thundery low and associated prefrontal squall line in western Europe. Meteor. Atmos. Phys., 65 , 113131.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and H. Cai, 2002: Airborne observations of a front near a col during FASTEX. Mon. Wea. Rev., 130 , 18981912.

  • Wallace, J. M., and P. V. Hobbs, 1977: Atmospheric Science: An Introductory Survey. Academic Press, 467 pp.

  • Wernli, H., 1997: A Lagrangian-based analysis of extratropical cyclones. II: A detailed case study. Quart. J. Roy. Meteor. Soc., 123 , 16771706.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., and H. C. Davies, 1997: A Lagrangian-based analysis of extratropical cyclones. I: The method and some applications. Quart. J. Roy. Meteor. Soc., 123 , 467489.

    • Search Google Scholar
    • Export Citation
  • Williams Jr, P., 1972: Western Region synoptic analysis—Problems and methods. NOAA NWS Western Region Tech. Memo. NWSTM WR-71, 71 pp. [Available from NOAA NWS Western Region Headquarters, 125 S. State Street, Rm. 1311, Salt Lake City, UT 84138-1102.].

  • Williams, R. T., 1967: Atmospheric frontogenesis: A numerical experiment. J. Atmos. Sci., 24 , 627641.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 22 22 22
PDF Downloads 22 22 22

A Review of Cold Fronts with Prefrontal Troughs and Wind Shifts

View More View Less
  • 1 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/National Severe Storms Laboratory, Norman, Oklahoma
Restricted access

Abstract

The conceptual model of a classical surface-based cold front consists of a sharp temperature decrease coincident with a pressure trough and a distinct wind shift at the surface. Many cold fronts, however, do not conform to this model—time series at a single surface station may possess a pressure trough and wind shift in the warm air preceding the cold front (hereafter called a prefrontal trough and prefrontal wind shift, respectively). Although many authors have recognized these prefrontal features previously, a review of the responsible mechanisms has not been performed to date. This paper presents such a review. Ten disparate mechanisms with different frontal structures have been identified from the previous literature. These mechanisms include those external to the front (i.e., those not directly associated with the cold front itself): synoptic-scale forcing, interaction with lee troughs/drylines, interaction with fronts in the mid- and upper troposphere, and frontogenesis associated with inhomogeneities in the prefrontal air. Mechanisms internal to the front (i.e., those directly associated with the structure and dynamics of the front) include the following: surface friction, frontogenesis acting on alongfront temperature gradients, moist processes, descent of air, ascent of air at the front, and generation of prefrontal bores/gravity waves. Given the gaps in our knowledge of the structure, evolution, and dynamics of surface cold fronts, this paper closes with an admonition for improving the links between theory, observations, and modeling to advance understanding and develop better conceptual models of cold fronts, with the goal of improving both scientific understanding and operational forecasting.

Corresponding author address: Dr. David M. Schultz, NOAA/National Severe Storms Laboratory, 1313 Halley Circle, Norman, OK 73069. Email: david.schultz@noaa.gov

Abstract

The conceptual model of a classical surface-based cold front consists of a sharp temperature decrease coincident with a pressure trough and a distinct wind shift at the surface. Many cold fronts, however, do not conform to this model—time series at a single surface station may possess a pressure trough and wind shift in the warm air preceding the cold front (hereafter called a prefrontal trough and prefrontal wind shift, respectively). Although many authors have recognized these prefrontal features previously, a review of the responsible mechanisms has not been performed to date. This paper presents such a review. Ten disparate mechanisms with different frontal structures have been identified from the previous literature. These mechanisms include those external to the front (i.e., those not directly associated with the cold front itself): synoptic-scale forcing, interaction with lee troughs/drylines, interaction with fronts in the mid- and upper troposphere, and frontogenesis associated with inhomogeneities in the prefrontal air. Mechanisms internal to the front (i.e., those directly associated with the structure and dynamics of the front) include the following: surface friction, frontogenesis acting on alongfront temperature gradients, moist processes, descent of air, ascent of air at the front, and generation of prefrontal bores/gravity waves. Given the gaps in our knowledge of the structure, evolution, and dynamics of surface cold fronts, this paper closes with an admonition for improving the links between theory, observations, and modeling to advance understanding and develop better conceptual models of cold fronts, with the goal of improving both scientific understanding and operational forecasting.

Corresponding author address: Dr. David M. Schultz, NOAA/National Severe Storms Laboratory, 1313 Halley Circle, Norman, OK 73069. Email: david.schultz@noaa.gov

Save