• Atlas, D., K. R. Hardy, R. Wexler, and R. Boucher, 1963: The origin of hurricane spiral bands. Geofis. Int., 3 , 123132.

  • Barnes, G. M., E. J. Zipser, D. P. Jorgensen, and F. D. Marks Jr., 1983: Mesoscale and convective scale structure of a hurricane rainband. J. Atmos. Sci., 40 , 21252137.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., J. F. Gamache, M. A. LeMone, and G. S. Stossmeister, 1991: A convective cell in a hurricane rainband. Mon. Wea. Rev., 119 , 776794.

    • Search Google Scholar
    • Export Citation
  • Bergeron, T., 1935: On the physics of cloud and precipitation. Proc. Fifth Assembly IUGG, Lisbon, Portugal, International Union of Geodesy and Geophysics, 156–178.

  • Black, M. L., R. W. Burpee, and F. D. Marks Jr., 1996: Vertical motion characteristics of tropical cyclones determined with airborne Doppler radar velocities. J. Atmos. Sci., 53 , 18871909.

    • Search Google Scholar
    • Export Citation
  • Black, R. A., and J. Hallett, 1986: Observations of the distribution of ice in hurricanes. J. Atmos. Sci., 43 , 802822.

  • Brown, P. R. A., and H. A. Swann, 1997: Evaluation of key microphysical parameters in three-dimensional cloud-model simulations using aircraft and multiparameter radar data. Quart. J. Roy. Meteor. Soc., 123 , 22452275.

    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., and M. L. Black, 1989: Temporal and spatial variation of rainfall near the centers of two tropical cyclones. Mon. Wea. Rev., 117 , 22082218.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., E. J. Zipser, and S. W. Nesbit, 2002: Reflectivity, ice scattering and lightning characteristics of hurricane eyewalls and rainbands. Part I: Quantitative description. Mon. Wea. Rev., 130 , 769784.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., and M. K. Yau, 2001: Spiral bands in a simulated hurricane. Part I: Vortex Rossby wave verification. J. Atmos. Sci., 58 , 21282145.

    • Search Google Scholar
    • Export Citation
  • Churchill, D. D., and R. Houze Jr., 1984: Development and structure of winter monsoon cloud clusters on 10 December 1978. J. Atmos. Sci., 41 , 933960.

    • Search Google Scholar
    • Export Citation
  • Cione, J. J., P. G. Black, and S. H. Houston, 2000: Surface observations in the hurricane environment. Mon. Wea. Rev., 128 , 15501561.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a two-dimensional model. J. Atmos. Sci., 46 , 30773107.

    • Search Google Scholar
    • Export Citation
  • Dunn, G. E., and B. I. Miller, 1960: Atlantic Hurricanes. Louisiana State University Press, 377 pp.

  • Ferrier, B. S., W-K. Tao, and J. Simpson, 1995: A double-moment multiple-phase four-class bulk ice scheme. Part II: Simulations of convective storms in different large-scale environments and comparisons with other bulk parameterizations. J. Atmos. Sci., 52 , 10011033.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., and Y. Ogura, 1988: Numerical simulation of a midlatitude squall line in two dimensions. J. Atmos. Sci., 45 , 38463879.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1977: The structure and energetics of the tropical cyclone. I: Storm structure. Mon. Wea. Rev., 105 , 11191135.

  • Frank, W. M., and J. L. McBride, 1989: The vertical distribution of heating in AMEX and GATE cloud clusters. J. Atmos. Sci., 46 , 34643478.

    • Search Google Scholar
    • Export Citation
  • Franklin, C. N., G. J. Holland, and P. T. May, 2005: Mechanisms for the generation of mesoscale vorticity features in tropical cyclone rainbands. Mon. Wea. Rev., submitted.

    • Search Google Scholar
    • Export Citation
  • Fujiyoshi, Y., T. Endoh, T. Yamada, K. Tsuboki, Y. Tachibana, and G. Wakahama, 1990: Determination of a ZR relationship for snowfall using a radar and high sensitivity snow gauges. J. Appl. Meteor., 29 , 147152.

    • Search Google Scholar
    • Export Citation
  • Gamache, J. F., and R. A. Houze Jr., 1982: Mesoscale air motions associated with a tropical squall line. Mon. Wea. Rev., 110 , 118135.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., X. Wu, W. Moncrieff, and W. D. Hall, 1998: Cloud-resolving modeling of cloud systems during Phase III of GATE. Part II: Effects of resolution and the third spatial dimension. J. Atmos. Sci., 55 , 32643282.

    • Search Google Scholar
    • Export Citation
  • Guinn, T. A., and W. H. Schubert, 1993: Hurricane spiral bands. J. Atmos. Sci., 50 , 33803403.

  • Holland, G. J., 1997: Maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54 , 25192541.

  • Holton, J. R., 1992: An Introduction to Dynamic Meteorology. 3d ed. Academic Press, 511 pp.

  • Houze Jr., R. A., 1977: Structure and dynamics of a tropical squall line. Mon. Wea. Rev., 105 , 15401567.

  • Houze Jr., R. A., 1982: Cloud clusters and large-scale vertical motions in the tropics. J. Meteor. Soc. Japan, 60 , 396410.

  • Houze Jr., R. A., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115 , 425461.

    • Search Google Scholar
    • Export Citation
  • Houze Jr, R. A., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Houze Jr., R. A., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78 , 21792196.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., F. D. Marks Jr., and R. A. Black, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part I: Mesoscale distribution of ice particles. J. Atmos. Sci., 49 , 943962.

    • Search Google Scholar
    • Export Citation
  • Ikawa, M., and K. Saito, 1991: Description of a nonhydrostatic model developed at the Forecast Research Department of the MRI. MRI Tech. Rep. 28, Meteorological Research Institute, Japan, 238 pp.

  • Jorgensen, D. P., 1984: Mesoscale and convective-scale characteristics of mature hurricanes. Part I: General observations by research aircraft. J. Atmos. Sci., 41 , 12681285.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., and P. T. Willis, 1982: A ZR relationship for hurricanes. J. Appl. Meteor., 21 , 356366.

  • Jorgensen, D. P., and M. A. LeMone, 1989: Vertical velocity characteristics of oceanic convection. J. Atmos. Sci., 46 , 621640.

  • Jorgensen, D. P., E. J. Zipser, and M. A. LeMone, 1985: Vertical motions in intense hurricanes. J. Atmos. Sci., 42 , 839856.

  • Keenan, T. D., and S. A. Rutledge, 1993: Mesoscale characteristics of monsoonal convection and associated stratiform precipitation. Mon. Wea. Rev., 121 , 352374.

    • Search Google Scholar
    • Export Citation
  • Lafore, J-P., and M. W. Moncrieff, 1989: A numerical investigation of the organization and interaction of the convective and stratiform regions of tropical squall lines. J. Atmos. Sci., 46 , 521544.

    • Search Google Scholar
    • Export Citation
  • Leary, C. A., and R. A. Houze Jr., 1979: The structure and evolution of convection in a tropical cloud cluster. J. Atmos. Sci., 36 , 437457.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1964: Numerical solutions for the shape-preserving two-dimensional thermal convective element. J. Atmos. Sci., 21 , 8398.

    • Search Google Scholar
    • Export Citation
  • Lin, Y-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22 , 10651092.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79 , 21852197.

  • Lord, S. J., H. E. Willoughby, and J. M. Piotrowicz, 1984: Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci., 41 , 28362848.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., E. J. Zipser, and M. A. LeMone, 1994: Vertical velocity in oceanic convection off tropical Australia. J. Atmos. Sci., 51 , 31833193.

    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., and H. Riehl, 1960: On the dynamics and energy transformations in steady-state hurricanes. Tellus, 12 , 120.

  • Marks Jr., F. D., 1985: Evolution of the structure of precipitation in Hurricane Allen (1980). Mon. Wea. Rev., 113 , 909930.

  • Marks Jr., F. D., and R. A. Houze Jr., 1987: Inner core structure of Hurricane Alicia from Doppler radar observations. J. Atmos. Sci., 44 , 12961317.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5 , 165166.

  • Matejka, T. J., R. A. Houze Jr., and P. V. Hobbs, 1980: Microphysics and dynamics of clouds associated with mesoscale rainbands in extratropical cyclones. Quart. J. Roy. Meteor. Soc., 106 , 2956.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: False reflection of waves at the boundary due to the use of finite differences. J. Meteor. Soc. Japan, 44 , 145157.

    • Search Google Scholar
    • Export Citation
  • May, P. T., 1996: The organization of convection in the rainbands of Tropical Cyclone Laurence. Mon. Wea. Rev., 124 , 807815.

  • May, P. T., and G. J. Holland, 1999: The role of potential vorticity generation in tropical cyclone rainbands. J. Atmos. Sci., 56 , 12241228.

    • Search Google Scholar
    • Export Citation
  • May, P. T., G. J. Holland, and W. L. Ecklund, 1994: Wind profiler observations of tropical storm Flo at Saipan. Wea. Forecasting, 9 , 410426.

    • Search Google Scholar
    • Export Citation
  • McCumber, M., W-K. Tao, and J. Simpson, 1991: Comparison of ice-phase microphysical parameterization schemes using numerical simulations of tropical convection. J. Appl. Meteor., 30 , 9851004.

    • Search Google Scholar
    • Export Citation
  • Miller, B. I., 1958: Rainfall rates in Florida hurricanes. Mon. Wea. Rev., 86 , 258264.

  • Moncrieff, M. W., and M. J. Miller, 1976: The dynamics and simulation of tropical cumulonimbus and squall lines. Quart. J. Roy. Meteor. Soc., 102 , 373394.

    • Search Google Scholar
    • Export Citation
  • Parrish, J. R., R. W. Burpee, F. D. Marks Jr., and R. Glebe, 1982: Rainfall patterns observed by digitized radar during the landfall of Hurricane “Frederic” (1979). Mon. Wea. Rev., 110 , 19331944.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1990a: Boundary-layer structure and dynamics in outer hurricane rainbands. Part I: Mesoscale rainfall and kinematic structure. Mon. Wea. Rev., 118 , 891917.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1990b: Boundary-layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118 , 918938.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124 , 10711107.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40 , 11851206.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation and development in narrow cold-frontal rainbands. J. Atmos. Sci., 41 , 29492972.

    • Search Google Scholar
    • Export Citation
  • Ryan, B. F., G. M. Barnes, and E. J. Zipser, 1992: A wide rainband in a developing tropical cyclone. Mon. Wea. Rev., 120 , 431447.

  • Samsury, C. E., and E. J. Zipser, 1995: Secondary wind maxima in hurricanes: Airflow and relationship to rainbands. Mon. Wea. Rev., 123 , 35023517.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2003: Stratiform precipitation in the Tropics as seen by the TRMM precipitation radar. J. Climate, 16 , 17391756.

    • Search Google Scholar
    • Export Citation
  • Senn, H. V., and H. W. Hiser, 1958: The origin and behaviour of hurricane spiral bands as observed on radar. Proc. Seventh Weather Radar Conf., Boston, MA, Amer. Meteor. Soc., K46–55.

  • Skamarock, W. C., M. L. Weisman, and J. B. Klemp, 1994: Three-dimensional evolution of simulated long-lived squall lines. J. Atmos. Sci., 51 , 25632584.

    • Search Google Scholar
    • Export Citation
  • Szoke, E. J., E. J. Zipser, and D. P. Jorgensen, 1986: A radar study of convective cells in mesoscale systems in GATE. Part I: Vertical profile statistics and comparison with hurricanes. J. Atmos. Sci., 43 , 182197.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., J. Simpson, and S-T. Soong, 1991: Numerical simulation of a subtropical squall line over the Taiwan Strait. Mon. Wea. Rev., 119 , 26992723.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 1999: A triply-nested movable mesh tropical cyclone model with explicit cloud microphysics—(TCM3). BMRC Research Rep. 74, Bureau of Meteorology Research Centre, Australia, 81 pp.

  • Wang, Y., 2001: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part I: Model description and control experiment. Mon. Wea. Rev., 129 , 13701394.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1978: A possible mechanism for the formation of hurricane rainbands. J. Atmos. Sci., 35 , 838848.

  • Willoughby, H. E., F. D. Marks Jr., and R. J. Feinberg, 1984: Stationary and moving convective bands in hurricanes. J. Atmos. Sci., 41 , 505514.

    • Search Google Scholar
    • Export Citation
  • Yang, M-J., and R. A. Houze Jr., 1995: Sensitivity of squall-line rear inflow to ice microphysics and environmental humidity. Mon. Wea. Rev., 123 , 31753193.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6 6 6
PDF Downloads 7 7 7

Sensitivity of Tropical Cyclone Rainbands to Ice-Phase Microphysics

View More View Less
  • 1 Department of Mathematics and Statistics, RMIT University, Melbourne, Victoria, Australia
  • | 2 Aerosonde Robotic Aircraft, Notting Hill, Victoria, Australia
  • | 3 Bureau of Meteorology Research Centre, Melbourne, Victoria, Australia
Restricted access

Abstract

A high-resolution tropical cyclone model with explicit cloud microphysics has been used to investigate the dynamics and energetics of tropical cyclone rainbands. As a first step, the model rainbands have been qualitatively compared with observed rainband characteristics. The model-generated rainbands show many of the mesoscale and convective-scale features of observed tropical cyclone rainbands. Sensitivity studies of numerically simulated tropical cyclone convection to ice-phase microphysical parameters showed that the model was most sensitive to changes in the graupel fall speed parameters. Increasing the fall speeds saw graupel being confined to the convective regions and producing higher rain rates in the inner core of the storm. A greater region of stratiform precipitation was produced when the efficiency for the collection of snow and cloud ice by graupel was reduced and when the mean size of graupel was reduced. Both of these simulations resulted in a higher concentration of snow being transported into the stratiform region. Although the precipitation structure changed across the simulations, the surface rainfall rate and the fundamental dynamical variables showed little sensitivity to the parameter variations.

Corresponding author address: Dr. Charmaine Franklin, Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, QC H3A 2K6, Canada.Email: charmaine.franklin@mail.mcgill.ca

Abstract

A high-resolution tropical cyclone model with explicit cloud microphysics has been used to investigate the dynamics and energetics of tropical cyclone rainbands. As a first step, the model rainbands have been qualitatively compared with observed rainband characteristics. The model-generated rainbands show many of the mesoscale and convective-scale features of observed tropical cyclone rainbands. Sensitivity studies of numerically simulated tropical cyclone convection to ice-phase microphysical parameters showed that the model was most sensitive to changes in the graupel fall speed parameters. Increasing the fall speeds saw graupel being confined to the convective regions and producing higher rain rates in the inner core of the storm. A greater region of stratiform precipitation was produced when the efficiency for the collection of snow and cloud ice by graupel was reduced and when the mean size of graupel was reduced. Both of these simulations resulted in a higher concentration of snow being transported into the stratiform region. Although the precipitation structure changed across the simulations, the surface rainfall rate and the fundamental dynamical variables showed little sensitivity to the parameter variations.

Corresponding author address: Dr. Charmaine Franklin, Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, QC H3A 2K6, Canada.Email: charmaine.franklin@mail.mcgill.ca

Save