Observations of the 11 June Dryline during IHOP_2002—A Null Case for Convection Initiation

Huaqing Cai Advanced Study Program and Atmospheric Technology Division, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Huaqing Cai in
Current site
Google Scholar
PubMed
Close
,
Wen-Chau Lee Atmospheric Technology Division, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Wen-Chau Lee in
Current site
Google Scholar
PubMed
Close
,
Tammy M. Weckwerth Atmospheric Technology Division, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Tammy M. Weckwerth in
Current site
Google Scholar
PubMed
Close
,
Cyrille Flamant Institut Pierre-Simon Laplace/Service d'Aeronomie, Paris, France

Search for other papers by Cyrille Flamant in
Current site
Google Scholar
PubMed
Close
, and
Hanne V. Murphey Department of Atmospheric Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Hanne V. Murphey in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The detailed analysis of the three-dimensional structure of a dryline observed over the Oklahoma panhandle during the International H2O Project (IHOP_2002) on 11 June 2002 is presented. High-resolution observations obtained from the National Center for Atmospheric Research Electra Doppler Radar (ELDORA), S-band dual-polarization Doppler radar (S-Pol), water vapor differential absorption lidar (DIAL) Lidar pour l'Etude des Interactions Aérosols Nuages Dynamique Rayonnement et du Cycle de l'Eau (LEANDRE II; translated as Lidar for the Study of Aerosol–Cloud–Dynamics–Radiation Interactions and of the Water Cycle) as well as Learjet dropsondes are used to reveal the evolution of the dryline structure during late afternoon hours when the dryline was retreating to the northwest. The dryline reflectivity shows significant variability in the along-line direction. Dry air was observed to overrun the moist air in vertical cross sections similar to a density current. The updrafts associated with the dryline were 2–3 m s−1 and were able to initiate boundary-layer-based clouds along the dryline. The formation of this dryline was caused by high equivalent potential temperature air pushing northwestward toward a stationary front in the warm sector.

Middle-level clouds with radar reflectivity greater than 18 dBZe near the dryline were detected by ELDORA. A roll boundary, which was associated with larger convergence and moisture content, was evident in the S-Pol data. It is found that the instability parameters most favorable for convection initiation were actually associated with the roll boundary, not the dryline. A storm was initiated near the roll boundary probably as a result of the combination of the favorable instability parameters and stronger upward forcing. It is noted that both the 11 June 2002 dryline and the roll boundary presented in this paper would not be identified if the special datasets from IHOP_2002 were not available.

Although all model runs [fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5), Meso Eta, and Rapid Update Cycle (RUC)] suggested deep convection over the Oklahoma panhandle and several cloud lines were observed near the dryline, the dryline itself did not initiate any storms. The reasons why the dryline failed to produce any storm inside the IHOP_2002 intensive observation region are discussed. Both synoptic-scale and mesoscale conditions that were detrimental to convection initiation in this case are investigated in great detail.

Corresponding author address: Huaqing Cai, Advanced Study Program and Atmospheric Technology Division, National Center for Atmospheric Research, Boulder, CO 80307. Email: caihq@ucar.edu

Abstract

The detailed analysis of the three-dimensional structure of a dryline observed over the Oklahoma panhandle during the International H2O Project (IHOP_2002) on 11 June 2002 is presented. High-resolution observations obtained from the National Center for Atmospheric Research Electra Doppler Radar (ELDORA), S-band dual-polarization Doppler radar (S-Pol), water vapor differential absorption lidar (DIAL) Lidar pour l'Etude des Interactions Aérosols Nuages Dynamique Rayonnement et du Cycle de l'Eau (LEANDRE II; translated as Lidar for the Study of Aerosol–Cloud–Dynamics–Radiation Interactions and of the Water Cycle) as well as Learjet dropsondes are used to reveal the evolution of the dryline structure during late afternoon hours when the dryline was retreating to the northwest. The dryline reflectivity shows significant variability in the along-line direction. Dry air was observed to overrun the moist air in vertical cross sections similar to a density current. The updrafts associated with the dryline were 2–3 m s−1 and were able to initiate boundary-layer-based clouds along the dryline. The formation of this dryline was caused by high equivalent potential temperature air pushing northwestward toward a stationary front in the warm sector.

Middle-level clouds with radar reflectivity greater than 18 dBZe near the dryline were detected by ELDORA. A roll boundary, which was associated with larger convergence and moisture content, was evident in the S-Pol data. It is found that the instability parameters most favorable for convection initiation were actually associated with the roll boundary, not the dryline. A storm was initiated near the roll boundary probably as a result of the combination of the favorable instability parameters and stronger upward forcing. It is noted that both the 11 June 2002 dryline and the roll boundary presented in this paper would not be identified if the special datasets from IHOP_2002 were not available.

Although all model runs [fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5), Meso Eta, and Rapid Update Cycle (RUC)] suggested deep convection over the Oklahoma panhandle and several cloud lines were observed near the dryline, the dryline itself did not initiate any storms. The reasons why the dryline failed to produce any storm inside the IHOP_2002 intensive observation region are discussed. Both synoptic-scale and mesoscale conditions that were detrimental to convection initiation in this case are investigated in great detail.

Corresponding author address: Huaqing Cai, Advanced Study Program and Atmospheric Technology Division, National Center for Atmospheric Research, Boulder, CO 80307. Email: caihq@ucar.edu

Save
  • Anthes, R. A., Y. H. Kuo, S. G. Benjamin, and Y. F. Li, 1982: The evolution of the mesoscale environment of severe local storms: Preliminary modeling results. Mon. Wea. Rev, 110 , 11851213.

    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., R. M. Wakimoto, and C. L. Ziegler, 1998: Observations of the finescale structure of a dryline during VORTEX 95. Mon. Wea. Rev, 126 , 525550.

    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1973: Mesoscale objective map analysis using weighted time-series observations. NOAA Tech. Memo. ERL NSSL-62, 60 pp.

  • Bluestein, H. B., 1993: CLASS for class. Bull. Amer. Meteor. Soc, 74 , 16971702.

  • Bluestein, H. B., and C. R. Parks, 1983: A synoptic and photographic climatology of low-precipitation severe thunderstorms in the southern plains. Mon. Wea. Rev, 111 , 20342046.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and S. S. Parker, 1993: Modes of isolated, severe convective storm formation along the dryline. Mon. Wea. Rev, 121 , 13521374.

    • Search Google Scholar
    • Export Citation
  • Bruneau, D., P. Quaglia, C. Flamant, M. Meissonnier, and J. Pelon, 2001: Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. Appl. Opt, 40 , 34503475.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., M. J. Carpenter, and C. D. Burghart, 1985: Doppler radar sampling limitations in convective storms. J. Atmos. Oceanic Technol, 2 , 357361.

    • Search Google Scholar
    • Export Citation
  • Crawford, T. M., and H. B. Bluestein, 1997: Characteristics of dryline passage during COPS-91. Mon. Wea. Rev, 125 , 463477.

  • Cressman, G. P., 1959: An operational objective analysis scheme. Mon. Wea. Rev, 87 , 367384.

  • Dowell, D. C., and H. B. Bluestein, 2002a: The 8 June 1995 McLean, Texas, storm. Part I: Observations of cyclic tornadogenesis. Mon. Wea. Rev, 130 , 26262648.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and H. B. Bluestein, 2002b: The 8 June 1995 McLean, Texas, storm. Part II: Cyclic tornado formation, maintenance, and dissipation. Mon. Wea. Rev, 130 , 26492670.

    • Search Google Scholar
    • Export Citation
  • Fabry, F., 2006: The spatial variability of moisture in the boundary layer and its effect of convection initiation: Project-long characterization. Mon. Wea. Rev, 134 , 7991.

    • Search Google Scholar
    • Export Citation
  • Fabry, F., C. Frush, I. Zawadzki, and A. Kilambi, 1997: On the extraction of the near-surface index of refraction using radar phase measurements from ground targets. J. Atmos. Oceanic Technol, 14 , 978987.

    • Search Google Scholar
    • Export Citation
  • Grasso, L. D., 2000: A numerical simulation of dryline sensitivity to soil moisture. Mon. Wea. Rev, 128 , 28162834.

  • Hane, C. E., C. L. Ziegler, and H. B. Bluestein, 1993: Investigation of the dryline and convective storms initiated along the dryline: Field experiments during COPS-91. Bull. Amer. Meteor. Soc, 74 , 21332145.

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., B. B. Bluestein, T. M. Crawford, M. E. Baldwin, and R. M. Rabin, 1997: Severe thunderstorm development in relation to along-dryline variability: A case study. Mon. Wea. Rev, 125 , 231251.

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., M. E. Baldwin, H. B. Bluestein, T. M. Crawford, and R. M. Rabin, 2001: A case study of severe storm development along a dryline within a synoptically active environment. Part I: Dryline motion and an Eta model forecast. Mon. Wea. Rev, 129 , 21832204.

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., R. M. Rabin, T. M. Crawford, H. B. Bluestein, and M. E. Baldwin, 2002: A case study of severe storm development along a dryline within a synoptically active environment. Part II: Multiple boundaries and convective initiation. Mon. Wea. Rev, 130 , 900920.

    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., C. A. Walther, C. L. Frush, J. Testud, and F. Baudin, 1994: The ELDORA/ASTRAIA airborne Doppler weather radar: Goals, design, and first field tests. Proc. IEEE, 82 , 18731890.

    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., and Coauthors, 1996: The ELDORA/ASTRAIA airborne Doppler weather radar: High resolution observations from TOGA COARE. Bull. Amer. Meteor. Soc, 77 , 213232.

    • Search Google Scholar
    • Export Citation
  • Hock, T. F., and J. L. Franklin, 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc, 80 , 407420.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc, 77 , 437471.

  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc, 82 , 247268.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and J. McCarthy, 1982: The evolution of an Oklahoma dryline: Part II: Boundary-layer forcing of mesoconvective systems. J. Atmos. Sci, 39 , 237257.

    • Search Google Scholar
    • Export Citation
  • Lee, W-C., P. Dodge, F. D. Marks, and P. H. Hildebrand, 1994: Mapping of airborne Doppler radar data. J. Atmos. Oceanic Technol, 11 , 572578.

    • Search Google Scholar
    • Export Citation
  • Leise, J. A., 1982: A multidimensional scale-telescoped filter and data extension package. NOAA Tech. Memo. ERL-82, 11 pp. [Available from NOAA ERL, 325 Broadway, Boulder, CO 80303.].

  • Lutz, J., P. Johnson, B. Lewis, E. Loew, M. Randall, and J. VanAndel, 1995: NCAR's S-Pol: Portable polarimetric S-band radar. Preprints, Ninth Symp. on Meteorological Observations and Instrumentation, Charlotte, NC, Amer. Meteor. Soc., 408–410.

  • Miller, J. A., T. A. Kovacs, and P. R. Bannon, 2001: A shallow water model of the diurnal dryline. J. Atmos. Sci, 58 , 35083524.

  • Mohr, C. G., L. J. Miller, R. L. Vaughn, and H. W. Frank, 1986: The merger of mesoscale datasets into a common Cartesian format for efficient and systematic analysis. J. Atmos. Oceanic Technol, 3 , 146161.

    • Search Google Scholar
    • Export Citation
  • Murphey, H. V., R. M. Wakimoto, C. Flamant, and D. E. Kingsmill, 2006: Dryline on 19 June 2002 during IHOP. Part I: Airborne Doppler and LEANDRE II analysis of the thin line structure and convection initiation. Mon. Wea. Rev, 134 , 406430.

    • Search Google Scholar
    • Export Citation
  • NSSP Staff, 1963: Environmental and thunderstorm structures as shown by National Severe Storms Project observations in spring 1960 and 1961. Mon. Wea. Rev, 91 , 271292.

    • Search Google Scholar
    • Export Citation
  • Oye, R., C. Mueller, and S. Smith, 1995: Software for radar translation, visualization, editing, and interpolation. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 359–361.

  • Parsons, D. B., M. A. Shapiro, R. M. Hardesty, R. J. Zamora, and J. M. Intrieri, 1991: The finescale structure of a west Texas dryline. Mon. Wea. Rev, 119 , 12421258.

    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., M. A. Shapiro, and E. Miller, 2000: The mesoscale structure of a nocturnal dryline and of a frontal-dryline merger. Mon. Wea. Rev, 128 , 38243838.

    • Search Google Scholar
    • Export Citation
  • Peckham, S. E., and L. J. Wicker, 2000: The influence of topography and lower tropospheric winds on dryline morphology. Mon. Wea. Rev, 128 , 21652189.

    • Search Google Scholar
    • Export Citation
  • Rhea, J. O., 1966: A study of thunderstorm formation along drylines. J. Appl. Meteor, 5 , 5863.

  • Richter, H., and L. F. Bosart, 2002: The suppression of deep moist convection near the southern Great Plains dryline. Mon. Wea. Rev, 130 , 16651691.

    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1974: The lifecycle of the dryline. J. Appl. Meteor, 13 , 444449.

  • Schaefer, J. T., 1986: The dryline. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 549–572.

  • Shaw, B. L., R. A. Pielke, and C. L. Ziegler, 1997: A three-dimensional numerical simulation of a Great Plains dryline. Mon. Wea. Rev, 125 , 14891506.

    • Search Google Scholar
    • Export Citation
  • Testud, J., P. H. Hildebrand, and W-C. Lee, 1995: A procedure to correct airborne Doppler radar data for navigation errors using the echo returned from the earth's surface. J. Atmos. Oceanic Technol, 12 , 800820.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., F. Chen, and K. W. Manning, 2004: A study of convection initiation in a mesoscale model using high-resolution land surface initial conditions. Mon. Wea. Rev, 132 , 29542976.

    • Search Google Scholar
    • Export Citation
  • Sun, W-Y., and C-C. Wu, 1992: Formation and diurnal variation of the dryline. J. Atmos. Sci, 49 , 16061619.

  • Wakimoto, R. M., and H. Cai, 2000: Analysis of a nontornadic storm during VORTEX 95. Mon. Wea. Rev, 128 , 565592.

  • Wakimoto, R. M., and H. Cai, 2002: Airborne observations of a front near a col during FASTEX. Mon. Wea. Rev, 130 , 18981912.

  • Wakimoto, R. M., C. Liu, and H. Cai, 1998: The Garden City, Kansas, storm during VORTEX 95: Part I: Overview of the storm's life cycle and mesocyclogenesis. Mon. Wea. Rev, 126 , 372392.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., W-C. Lee, H. B. Bluestein, C-H. Liu, and P. H. Hildebrand, 1996: ELDORA observations during VORTEX 95. Bull. Amer. Meteor. Soc, 77 , 14651481.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and Coauthors, 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc, 85 , 253277.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., R. P. Crystalyne, F. Fabry, S. Park, and J. W. Wilson, 2005: Radar refractivity retrieval: Validation and application to short-term forecasting. J. Appl. Meteor, 44 , 285300.

    • Search Google Scholar
    • Export Citation
  • Weiss, C. C., and H. B. Bluestein, 2002: Airborne pseudo-dual Doppler analysis of a dryline-outflow boundary intersection. Mon. Wea. Rev, 130 , 12071226.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and D. L. Megenhardt, 1997: Thunderstorm initiation, organization, and lifetime associated with Florida boundary layer convergence lines. Mon. Wea. Rev, 125 , 15071525.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., T. M. Weckwerth, J. Vivekanandan, R. M. Wakimoto, and R. W. Russell, 1994: Boundary layer clear-air radar echoes: Origin of echoes and accuracy of derived winds. J. Atmos. Oceanic Technol, 11 , 11841206.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., and C. E. Hane, 1993: An observational study of the dryline. Mon. Wea. Rev, 121 , 11341151.

  • Ziegler, C. L., and E. N. Rasmussen, 1998: The initiation of moist convection at the dryline: Forecasting issues from a case study perspective. Wea. Forecasting, 13 , 11061131.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., W. J. Martin, R. A. Pielke, and R. L. Walko, 1995: A modeling study of the dryline. J. Atmos. Sci, 52 , 273285.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 385 238 127
PDF Downloads 176 96 5