Observations of Convection Initiation “Failure” from the 12 June 2002 IHOP Deployment

Paul Markowski Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Paul Markowski in
Current site
Google Scholar
PubMed
Close
,
Christina Hannon Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Christina Hannon in
Current site
Google Scholar
PubMed
Close
, and
Erik Rasmussen Cooperative Institute for Mesoscale Meteorological Studies, Norman, Oklahoma

Search for other papers by Erik Rasmussen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observations of the development of cumulus convection, which reached depths of several kilometers but failed to develop into sustained, precipitating, cumulonimbus clouds—an event the authors term “convection initiation failure”—are presented from the 12 June 2002 International H2O Project (IHOP) case. The investigation relies heavily on remote and in situ data obtained by mobile, truck-borne Doppler radars, mobile mesonets, mobile soundings, and stereo cloud photogrammetry.

Data collection was focused in northwestern Oklahoma near the intersection of an outflow boundary and dryline. Thunderstorms developed along the dryline during the late afternoon approximately 40 km east of the domain intensively observed by the ground-based observing systems. Farther west, within the region of dense observations analyzed herein, cumulus congestus clouds formed along an outflow boundary. Multiple-Doppler wind syntheses revealed that the boundary layer vertical velocity field was dominated by thermals rather than by circulations associated with the mesoscale boundaries. In spite of this observation, deep cumulus cloud development was confined to the mesoscale boundaries. Trajectories into the deep cumulus clouds that developed along the outflow boundary were much more vertical than those entering the shallow cumulus clouds observed away from the outflow boundary. It is hypothesized that the role of the outflow boundary in promoting deep cumulus cloud formation was to promote updrafts that were less susceptible to the dilution of equivalent potential temperature, which controls the potential buoyancy, vertical velocity, and depth that can be realized by the clouds. It is also hypothesized that the lack of a persistent, spatially continuous corridor of mesoscale ascent along the outflow boundary and associated moisture upwelling contributed to convection initiation failure along the outflow boundary.

Corresponding author address: Dr. Paul Markowski, The Pennsylvania State University, 503 Walker Building, University Park, PA 16802. Email: pmarkowski@psu.edu

Abstract

Observations of the development of cumulus convection, which reached depths of several kilometers but failed to develop into sustained, precipitating, cumulonimbus clouds—an event the authors term “convection initiation failure”—are presented from the 12 June 2002 International H2O Project (IHOP) case. The investigation relies heavily on remote and in situ data obtained by mobile, truck-borne Doppler radars, mobile mesonets, mobile soundings, and stereo cloud photogrammetry.

Data collection was focused in northwestern Oklahoma near the intersection of an outflow boundary and dryline. Thunderstorms developed along the dryline during the late afternoon approximately 40 km east of the domain intensively observed by the ground-based observing systems. Farther west, within the region of dense observations analyzed herein, cumulus congestus clouds formed along an outflow boundary. Multiple-Doppler wind syntheses revealed that the boundary layer vertical velocity field was dominated by thermals rather than by circulations associated with the mesoscale boundaries. In spite of this observation, deep cumulus cloud development was confined to the mesoscale boundaries. Trajectories into the deep cumulus clouds that developed along the outflow boundary were much more vertical than those entering the shallow cumulus clouds observed away from the outflow boundary. It is hypothesized that the role of the outflow boundary in promoting deep cumulus cloud formation was to promote updrafts that were less susceptible to the dilution of equivalent potential temperature, which controls the potential buoyancy, vertical velocity, and depth that can be realized by the clouds. It is also hypothesized that the lack of a persistent, spatially continuous corridor of mesoscale ascent along the outflow boundary and associated moisture upwelling contributed to convection initiation failure along the outflow boundary.

Corresponding author address: Dr. Paul Markowski, The Pennsylvania State University, 503 Walker Building, University Park, PA 16802. Email: pmarkowski@psu.edu

Save
  • Arnott, N., Y. Richardson, J. Wurman, and J. Lutz, 2003: A solar calibration technique for determining mobile radar pointing angles. Preprints, 31st Int. Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., 492–494.

  • Arnott, N., Y. Richardson, and J. Wurman, 2004: High-resolution observations of a cold front on 10 June 2002. Preprints, 22d Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., CD-ROM, 16A.3.

  • Atkins, N. T., R. M. Wakimoto, and T. M. Weckwerth, 1995: Observations of the sea-breeze front during CaPE. Part II: Dual-Doppler and aircraft analysis. Mon. Wea. Rev, 123 , 944969.

    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor, 3 , 396409.

  • Biggerstaff, M. I., and J. Guynes, 2000: A new tool for atmospheric research. Preprints, 20th Conf. on Severe Local Storms, Orlando, FL, Amer. Meteor. Soc., 277–280.

  • Bluestein, H. B., 1993: CLASS for class. Bull. Amer. Meteor. Soc, 74 , 16971702.

  • Braham, R. R., and M. Draginis, 1960: Roots of orographic cumuli. J. Atmos. Sci, 17 , 214226.

  • Carbone, R. E., J. W. Conway, N. A. Crook, and M. W. Moncrieff, 1990: The generation and propagation of a nocturnal squall line. Part I: Observations and implications for mesoscale predictability. Mon. Wea. Rev, 118 , 2649.

    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1994: Numerical simulations initialized with radar-derived winds. Part I: Simulated data experiments. Mon. Wea. Rev, 122 , 11891203.

    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev, 124 , 17671785.

    • Search Google Scholar
    • Export Citation
  • Crook, N. A., and J. B. Klemp, 2000: Lifting by convergence lines. J. Atmos. Sci, 57 , 873890.

  • Doswell, C. A., 1987: The distinction between large-scale and mesoscale contribution to severe convection: A case study example. Wea. Forecasting, 2 , 316.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., and E. N. Rasmussen, 1994: The effect of neglecting the virtual temperature correction on CAPE calculations. Wea. Forecasting, 9 , 625629.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., D. V. Baker, and C. A. Liles, 2002: Recognition of negative mesoscale factors for severe-weather potential: A case study. Wea. Forecasting, 17 , 937954.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnic, 1993: Doppler Radar and Weather Observations. Academic Press, 562 pp.

  • Droegemeier, K. K., and R. B. Wilhelmson, 1985: Three-dimensional numerical modeling of convection produced by interacting thunderstorm outflows. Part I: Control simulation and low-level moisture variation. J. Atmos. Sci, 42 , 23812403.

    • Search Google Scholar
    • Export Citation
  • Fankhauser, J. C., N. A. Crook, J. Tuttle, L. J. Miller, and C. G. Wade, 1995: Initiation of deep convection along boundary layer convergence lines in a semitropical environment. Mon. Wea. Rev, 123 , 291313.

    • Search Google Scholar
    • Export Citation
  • Ferretti, R., F. Einaudi, and L. W. Uccellini, 1988: Wave disturbances associated with the Red River Valley severe weather outbreak of 10–11 April 1979. Meteor. Atmos. Phys, 39 , 132168.

    • Search Google Scholar
    • Export Citation
  • Frederickson, S. E., 1993: National Severe Storms Laboratory mobile atmospheric laboratories; Surface meteorological measurements. Preprints, Eighth Symp. on Meteorological Observations and Instrumentation, Anaheim, CA, Amer. Meteor. Soc., 219–224.

  • Gal-Chen, T., 1978: A method for the initialization of the anelastic equations: Implications for matching models with observations. Mon. Wea. Rev, 106 , 587606.

    • Search Google Scholar
    • Export Citation
  • Gal-Chen, T., and R. A. Kropfli, 1984: Buoyancy and pressure perturbations derived from dual-Doppler radar observations of the planetary boundary layer: Applications for matching models with observations. J. Atmos. Sci, 41 , 30073020.

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., and P. S. Ray, 1985: Pressure and buoyancy fields derived from Doppler radar data in a tornadic thunderstorm. J. Atmos. Sci, 42 , 1835.

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., C. L. Ziegler, and P. S. Ray, 1988: Use of velocity fields from Doppler radars to retrieve other variables in thunderstorms. Instruments and Techniques from Thunderstorm Observation and Analysis, E. Kessler, Ed., University of Oklahoma Press, 215–234.

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., H. B. Bluestein, T. M. Crawford, M. E. Baldwin, and R. M. Rabin, 1997: Severe thunderstorm development in relation to along-dryline variability: A case study. Mon. Wea. Rev, 125 , 231251.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and P. O. G. Persson, 1982: The mesoscale and microscale structure of clouds and precipitation in midlatitude cyclones. Part V: The substructure of narrow cold frontal rainbands. J. Atmos. Sci, 39 , 280295.

    • Search Google Scholar
    • Export Citation
  • Hock, T. F., and J. L. Franklin, 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc, 80 , 407420.

  • Huggins, A. W., 1995: Mobile microwave radiometer observations: Spatial characteristics of supercooled cloud water and cloud seeding implications. J. Appl. Meteor, 34 , 432446.

    • Search Google Scholar
    • Export Citation
  • James, R. P., and J. M. Fritsch, 2003: The inflow environments of cellular and slabular convective lines. Preprints, 10th Conf. on Mesoscale Processes, Portland, OR, Amer. Meteor. Soc., CD-ROM, 4.5.

  • James, R. P., J. M. Fritsch, and P. M. Markowski, 2005: Environmental distinctions between cellular and slabular convective lines. Mon. Wea. Rev, 133 , 26692691.

    • Search Google Scholar
    • Export Citation
  • Kanak, K. M., D. K. Lilly, and J. T. Snow, 2000: The formation of vertical vortices in the convective boundary layer. Quart. J. Roy. Meteor. Soc, 126A , 27892810.

    • Search Google Scholar
    • Export Citation
  • Karyampudi, V. M., S. E. Koch, J. W. Rottman, and M. L. Kaplan, 1995: The influence of the Rocky Mountains in the 13–14 April 1986 severe weather outbreak. Part II: Evolution of an internal bore and its role in triggering a squall line. Mon. Wea. Rev, 123 , 14231446.

    • Search Google Scholar
    • Export Citation
  • Kessinger, C. J., P. S. Ray, and C. E. Hane, 1987: The Oklahoma squall line of 19 May 1977. Part I: A multiple Doppler analysis of convective and stratiform structure. J. Atmos. Sci, 44 , 28402864.

    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., 1995: Convection initiation associated with a sea-breeze front, a gust front, and their collision. Mon. Wea. Rev, 123 , 29132933.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., 1984: The role of an apparent mesoscale frontogenetical circulation in squall line initiation. Mon. Wea. Rev, 112 , 20902111.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and W. L. Clark, 1999: A nonclassical cold front observed during COPS-91: Frontal structure and the process of severe storm initiation. J. Atmos. Sci, 56 , 28622890.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., M. DesJardins, and P. J. Kocin, 1983: An interactive Barnes objective map analysis scheme for use with satellite and conventional data. J. Climate Appl. Meteor, 22 , 14871503.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., A. Aksakal, and J. T. McQueen, 1997: The influence of mesoscale humidity and evapotranspiration fields on a model forecast of a cold frontal squall line. Mon. Wea. Rev, 125 , 5883.

    • Search Google Scholar
    • Export Citation
  • Lee, B. D., and C. A. Finley, 2000: Simulating deep convection initiation by misocyclones. Preprints, 20th Conf. on Severe Local Storms, Orlando, FL, Amer. Meteor. Soc., 70–73.

  • Lhermitte, R. M., and M. Gilet, 1975: Dual-Doppler observation and study of sea breeze convective storm development. J. Appl. Meteor, 14 , 13461361.

    • Search Google Scholar
    • Export Citation
  • Markowski, P., and C. Hannon, 2006: Multiple-Doppler radar observations of the evolution of vorticity extrema in a convective boundary layer. Mon. Wea. Rev, 134 , 355374.

    • Search Google Scholar
    • Export Citation
  • Marquis, J., Y. P. Richardson, and J. Wurman, 2004: Observations of misocyclones along boundaries during IHOP. Preprints, 22d Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., CD-ROM, 16A.5.

  • Matejka, T., 2002: Estimating the most steady frame of reference from Doppler radar data. J. Atmos. Oceanic Technol, 19 , 10351048.

  • Matthews, D. A., 1981: Observations of a cloud arc triggered by thunderstorm outflow. Mon. Wea. Rev, 109 , 21402157.

  • Ogura, Y., and Y-L. Chen, 1977: A life history of an intense mesoscale convective storm in Oklahoma. J. Atmos. Sci, 34 , 14581476.

  • Orville, H. D., 1964: On mountain upslope winds. J. Atmos. Sci, 21 , 622633.

  • Parsons, D. B., C. G. Mohr, and T. Gal-Chen, 1987: A severe frontal rainband. Part III: Derived thermodynamic structure. J. Atmos. Sci, 44 , 16131631.

    • Search Google Scholar
    • Export Citation
  • Purdom, J. F. W., 1976: Some uses of high-resolution GOES imagery in the mesoscale forecasting of convection and its behavior. Mon. Wea. Rev, 104 , 14741483.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., R. Davies-Jones, and R. L. Holle, 2003: Terrestrial photogrammetry of weather images acquired in uncontrolled circumstances. J. Atmos. Oceanic Technol, 20 , 17901803.

    • Search Google Scholar
    • Export Citation
  • Ray, P. S., and K. L. Sangren, 1983: Multiple-Doppler radar network design. J. Climate Appl. Meteor, 22 , 14441454.

  • Raymond, D., and M. Wilkening, 1980: Mountain-induced convection under fair weather conditions. J. Atmos. Sci, 37 , 26932706.

  • Rhea, J. O., 1966: A study of thunderstorm formation along dry lines. J. Appl. Meteor, 5 , 5863.

  • Richardson, Y. P., J. Marquis, E. Rasmussen, J. Wurman, and N. Arnott, 2004: Analysis of convection initiation along a dryline on 19 June 2002. Preprints, 22d Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., CD-ROM, 16A.4.

  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci, 45 , 463485.

  • Roux, F., 1985: Retrieval of thermodynamic fields from multiple-Doppler radar data using the equations of motion and the thermodynamic equation. Mon. Wea. Rev, 113 , 21422157.

    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1986: The dryline. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 549–572.

  • Segal, M., and R. W. Arritt, 1992: Nonclassical mesoscale circulations caused by surface sensible heat-flux gradients. Bull. Amer. Meteor. Soc, 73 , 15931604.

    • Search Google Scholar
    • Export Citation
  • Segal, M., J. F. W. Purdom, J. L. Song, R. A. Pielke, and Y. Mahrer, 1986: Evaluation of cloud shading effects on the generation and modification of mesoscale circulations. Mon. Wea. Rev, 114 , 12011212.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A., and K. M. Kanak, 2002: Vortex formation in ellipsoidal thermal bubbles. J. Atmos. Sci, 59 , 22532269.

  • Stonitsch, J., and P. Markowski, 2004: Evolution of boundary layer wind and moisture fields along a front during IHOP. Preprints, 22d Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., CD-ROM, 16A.7.

  • Straka, J. M., E. N. Rasmussen, and S. E. Fredrickson, 1996: A mobile mesonet for finescale meteorological observations. J. Atmos. Oceanic Technol, 13 , 921936.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., and C. A. Doswell, 2000: Radar data objective analysis. J. Atmos. Oceanic Technol, 17 , 105120.

  • Wakimoto, R. M., and N. T. Atkins, 1994: Observation of the sea-breeze front during CAPE. Part I: Single Doppler, satellite, and cloud photogrammetry analysis. Mon. Wea. Rev, 122 , 10921113.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., J. W. Wilson, and R. M. Wakimoto, 1996: Thermodynamic variability within the convective boundary layer due to horizontal convective rolls. Mon. Wea. Rev, 124 , 769784.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., J. W. Wilson, R. M. Wakimoto, and N. A. Crook, 1997: Horizontal convective rolls: Determining the environmental conditions supporting their existence and characteristics. Mon. Wea. Rev, 125 , 505526.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and Coauthors, 2004: An overview of the International H2O Project (IHOP) and some preliminary highlights. Bull. Amer. Meteor. Soc, 85 , 253277.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., 1992: The role of convectively generated rear-inflow jets in the evolution of long-lived mesoconvective systems. J. Atmos. Sci, 49 , 18261847.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and W. E. Schreiber, 1986: Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev, 114 , 25162536.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., G. B. Foote, N. A. Crook, J. C. Fankhauser, C. G. Wade, J. D. Tuttle, and C. K. Mueller, 1992: The role of boundary-layer convergence zones and horizontal rolls in the initiation of thunderstorms: A case study. Mon. Wea. Rev, 120 , 17851815.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., T. M. Weckwerth, J. Vivekanandan, R. M. Wakimoto, and R. W. Russell, 1994: Boundary layer clear-air radar echoes: Origin of echoes and accuracy of derived winds. J. Atmos. Oceanic Technol, 11 , 11841206.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., J. Straka, E. Rasmussen, M. Randall, and A. Zahrai, 1997: Design and deployment of a portable, pencil-beam, pulsed, 3-cm Doppler radar. J. Atmos. Oceanic Technol, 14 , 15021512.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., and E. N. Rasmussen, 1998: The initiation of moist convection at the dryline: Forecasting issues from a case study perspective. Wea. Forecasting, 13 , 11061131.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., T. J. Lee, and R. A. Pielke Sr., 1997: Convective initiation at the dryline: A modeling study. Mon. Wea. Rev, 125 , 10011026.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1256 651 102
PDF Downloads 250 63 0