Multiple-Doppler Radar Observations of the Evolution of Vorticity Extrema in a Convective Boundary Layer

Paul Markowski Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Paul Markowski in
Current site
Google Scholar
PubMed
Close
and
Christina Hannon Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Christina Hannon in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Overdetermined, dual-Doppler wind syntheses are used to document the evolution, structure, and dynamics of vertical vorticity extrema observed in a convective boundary layer during the 12 June 2002 International H2O Project (IHOP) mission. Discrete vertical vorticity extrema having horizontal scales of 1–2 km can be observed continuously for periods exceeding an hour. The evolution of the vorticity field is characterized by complex interactions among vorticity extrema and between the vertical vorticity and vertical velocity fields. The most prominent vorticity maxima have amplitudes of approximately 0.01 s−1 and are associated with retrieved pressure deficits of order 0.1 mb. The vorticity extrema weaken with height and tilt in the presence of vertical wind shear. Advection and propagation both contribute substantially to the motion of the vorticity extrema.

Amplifications of vertical vorticity are closely linked to the intensification of updrafts. Both stretching and tilting can contribute significantly to the vorticity budgets of the air parcels comprising the vorticity extrema, and their relative importance varies with elevation, evolutionary stage, and from one vorticity extremum to another. It is therefore difficult to generalize about the dynamics of the vorticity extrema. It also is difficult to generalize about the helicity of the vorticity maxima and suppression of mixing for similar reasons. The weakening of vertical vorticity extrema is closely tied to the weakening of updrafts. In some cases, downward-directed vertical pressure gradient forces due to vertical gradients of rotation bring about updraft weakening and vorticity demise. An improved understanding of the nature of boundary layer vortices could have large relevance to convection initiation owing to feedbacks between vertical velocity and vorticity.

Corresponding author address: Dr. Paul Markowski, The Pennsylvania State University, 503 Walker Building, University Park, PA 16802. Email: pmarkowski@psu.edu

Abstract

Overdetermined, dual-Doppler wind syntheses are used to document the evolution, structure, and dynamics of vertical vorticity extrema observed in a convective boundary layer during the 12 June 2002 International H2O Project (IHOP) mission. Discrete vertical vorticity extrema having horizontal scales of 1–2 km can be observed continuously for periods exceeding an hour. The evolution of the vorticity field is characterized by complex interactions among vorticity extrema and between the vertical vorticity and vertical velocity fields. The most prominent vorticity maxima have amplitudes of approximately 0.01 s−1 and are associated with retrieved pressure deficits of order 0.1 mb. The vorticity extrema weaken with height and tilt in the presence of vertical wind shear. Advection and propagation both contribute substantially to the motion of the vorticity extrema.

Amplifications of vertical vorticity are closely linked to the intensification of updrafts. Both stretching and tilting can contribute significantly to the vorticity budgets of the air parcels comprising the vorticity extrema, and their relative importance varies with elevation, evolutionary stage, and from one vorticity extremum to another. It is therefore difficult to generalize about the dynamics of the vorticity extrema. It also is difficult to generalize about the helicity of the vorticity maxima and suppression of mixing for similar reasons. The weakening of vertical vorticity extrema is closely tied to the weakening of updrafts. In some cases, downward-directed vertical pressure gradient forces due to vertical gradients of rotation bring about updraft weakening and vorticity demise. An improved understanding of the nature of boundary layer vortices could have large relevance to convection initiation owing to feedbacks between vertical velocity and vorticity.

Corresponding author address: Dr. Paul Markowski, The Pennsylvania State University, 503 Walker Building, University Park, PA 16802. Email: pmarkowski@psu.edu

Save
  • Andrè, J. C., and M. LeSieur, 1977: Influence of helicity on the evolution of isotropic turbulence at high Reynolds number. J. Fluid Mech, 18 , 187207.

    • Search Google Scholar
    • Export Citation
  • Arnott, N., Y. Richardson, J. Wurman, and J. Lutz, 2003: A solar calibration technique for determining mobile radar pointing angles. Preprints, 31st Int. Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., 492–494.

  • Atkins, N. T., R. M. Wakimoto, and T. M. Weckwerth, 1995: Observations of the sea-breeze front during CaPE: Part II: Dual-Doppler and aircraft analysis. Mon. Wea. Rev, 123 , 944969.

    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., R. M. Wakimoto, and C. L. Ziegler, 1998: Observations of the finescale structure of a dryline during VORTEX 95. Mon. Wea. Rev, 126 , 525550.

    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor, 3 , 396409.

  • Biggerstaff, M. I., and J. Guynes, 2000: A new tool for atmospheric research. Preprints, 20th Conf. on Severe Local Storms, Orlando, FL, Amer. Meteor, Soc., 277–280.

  • Bluestein, H. B., C. C. Weiss, and A. L. Pazmany, 2004: Doppler radar observations of dust devils in Texas. Mon. Wea. Rev, 132 , 209224.

    • Search Google Scholar
    • Export Citation
  • Brady, R. H., and E. J. Szoke, 1989: A case study of nonmesocyclone tornado development in northeast Colorado: Similarities to waterspout formation. Mon. Wea. Rev, 117 , 843856.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., 1984a: Vertical vorticity generation and mesocyclone sustenance in tornadic thunderstorms: The observational evidence. Mon. Wea. Rev, 112 , 22532269.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., 1984b: Relationships between radar-derived thermodynamic variables and tornadogenesis. Mon. Wea. Rev, 112 , 10331052.

  • Carbone, R. E., 1983: A severe frontal rainband. Part II: Tornado parent vortex circulation. Mon. Wea. Rev, 111 , 26392654.

  • Carroll, J. J., and J. A. Ryan, 1970: Atmospheric vorticity and dust devil rotation. J. Geophys. Res, 75 , 51795184.

  • Cortese, T., and S. Balachandar, 1993: Vortical nature of thermal plumes in turbulent convection. Phys. Fluids, A5 , 32263232.

  • Davies-Jones, R. P., 1982: A new look at the vorticity equation with application to tornadogenesis. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 249–252.

  • Davies-Jones, R. P., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci, 41 , 29913006.

  • Davies-Jones, R. P., 1986: Tornado dynamics. Thunderstorm Morphology and Dynamics, 2d ed., E. Kessler, Ed., University of Oklahoma Press, 197–236.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1972: Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci, 29 , 91115.

  • Fujiwhara, S., 1931: Short note on the behavior of two vortices. Proc. Phys. Math. Soc. Japan, 13 , 106110.

  • Gal-Chen, T., 1978: A method for the initialization of the anelastic equations: Implications for matching models with observations. Mon. Wea. Rev, 106 , 587606.

    • Search Google Scholar
    • Export Citation
  • Gal-Chen, T., and R. A. Kropfli, 1984: Buoyancy and pressure perturbations derived from dual-Doppler radar observations of the planetary boundary layer: Applications for matching models with observations. J. Atmos. Sci, 41 , 30073020.

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., and P. S. Ray, 1985: Pressure and buoyancy fields derived from Doppler radar data in a tornadic thunderstorm. J. Atmos. Sci, 42 , 1835.

    • Search Google Scholar
    • Export Citation
  • Hess, G. D., and K. T. Spillane, 1990: Characteristics of dust devils in Australia. J. Appl. Meteor, 29 , 498507.

  • Kanak, K. M., D. K. Lilly, and J. T. Snow, 2000: The formation of vertical vortices in the convective boundary layer. Quart. J. Roy. Meteor. Soc, 126A , 27892810.

    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., and J. A. Businger, 1970: Case studies of a convective plume and a dust devil. J. Appl. Meteor, 9 , 612620.

  • Kessinger, C. J., P. S. Ray, and C. E. Hane, 1987: The Oklahoma squall line of 19 May 1977. Part I: A multiple Doppler analysis of convective and stratiform structure. J. Atmos. Sci, 44 , 28402864.

    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., 1995: Convection initiation associated with a sea-breeze front, a gust front, and their collision. Mon. Wea. Rev, 123 , 29132933.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., 1987: Dynamics of tornadic thunderstorms. Annu. Rev. Fluid Mech, 19 , 369402.

  • Klemp, J. B., and R. Rotunno, 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci, 40 , 359377.

  • Koch, S. E., M. DesJardins, and P. J. Kocin, 1983: An interactive Barnes objective map analysis scheme for use with satellite and conventional data. J. Climate Appl. Meteor, 22 , 14871503.

    • Search Google Scholar
    • Export Citation
  • Kundu, P. K., 1990: Fluid Mechanics. Academic Press, 638 pp.

  • Lee, B. D., and C. A. Finley, 2000: Simulating deep convection initiation by misocyclones. Preprints, 20th Conf. on Severe Local Storms, Orlando, FL, Amer. Meteor. Soc., 70–73.

  • Lilly, D. K., 1986: The structure, energetics, and propagation of rotating convective storms. Part II: Helicity and storm stabilization. J. Atmos. Sci, 43 , 126140.

    • Search Google Scholar
    • Export Citation
  • Lugt, H. J., 1979: The dilemma of defining a vortex. Recent Developments in Theoretical and Experimental Fluid Mechanics, U. Muller, K. G. Roesner, and B. Schmidt, Eds., Springer-Verlag, 309–321.

    • Search Google Scholar
    • Export Citation
  • MacPherson, J. I., and A. K. Betts, 1997: Aircraft encounters with strong coherent vortices over the boreal forest. J. Geophys. Res, 102 , (D24). 2923129234.

    • Search Google Scholar
    • Export Citation
  • Markowski, P., C. Hannon, and E. Rasmussen, 2006: Observations of convection initiation “failure” from the 12 June 2002 IHOP deployment. Mon. Wea. Rev, 134 , 375405.

    • Search Google Scholar
    • Export Citation
  • Matejka, T., 2002: Estimating the most steady frame of reference from Doppler radar data. J. Atmos. Oceanic Technol, 19 , 10351048.

  • Maxworthy, T., 1973: A vorticity source for large scale dust devils and other comments on naturally occurring columnar vortices. J. Atmos. Sci, 30 , 17171722.

    • Search Google Scholar
    • Export Citation
  • Miles, J. W., and L. N. Howard, 1964: Note on a heterogeneous shearflow. J. Fluid Mech, 20 , 331336.

  • Mueller, C. K., and R. E. Carbone, 1987: Dynamics of a thunderstorm outflow. J. Atmos. Sci, 44 , 18791898.

  • Pietrycha, A. E., and E. N. Rasmussen, 2004: Finescale surface observations of the dryline: A mobile mesonet perspective. Wea. Forecasting, 19 , 10751088.

    • Search Google Scholar
    • Export Citation
  • Richardson, Y. P., J. M. Wurman, and C. Hartman, 2003: Multi-Doppler analysis of convective initiation on 19 June 2002 during IHOP. Preprints, 31st Int. Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., 793–795.

  • Roberts, R. D., and J. W. Wilson, 1995: The genesis of three nonsupercell tornadoes observed with dual-Doppler radar. Mon. Wea. Rev, 123 , 34083436.

    • Search Google Scholar
    • Export Citation
  • Roux, F., 1985: Retrieval of thermodynamic fields from multiple-Doppler radar data using the equations of motion and the thermodynamic equation. Mon. Wea. Rev, 113 , 21422157.

    • Search Google Scholar
    • Export Citation
  • Schneider, J. M., and D. K. Lilly, 1999: An observational and numerical study of a sheared, convective boundary layer. Part I: Phoenix II observations, statistical description, and visualization. J. Atmos. Sci, 56 , 30593078.

    • Search Google Scholar
    • Export Citation
  • Segal, M., and R. W. Arritt, 1992: Nonclassical mesoscale circulations caused by surface sensible heat-flux gradients. Bull. Amer. Meteor. Soc, 73 , 15931604.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A., and K. M. Kanak, 2002: Vortex formation in ellipsoidal thermal bubbles. J. Atmos. Sci, 59 , 22532269.

  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Part I: The basic experiment. Mon. Wea. Rev, 91 , 99164.

    • Search Google Scholar
    • Export Citation
  • Snow, J. T., and T. M. McClelland, 1990: Dust devils at White Sands Missile Range, New Mexico. Part I: Temporal and spatial distribution. J. Geophys. Res, 95 , 1370713721.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., and C. A. Doswell, 2000: Radar data objective analysis. J. Atmos. Oceanic Technol, 17 , 105120.

  • Wakimoto, R. M., and J. W. Wilson, 1989: Non-supercell tornadoes. Mon. Wea. Rev, 117 , 11131140.

  • Weckwerth, T. M., and Coauthors, 2004: An overview of the International H2O Project (IHOP) and some preliminary highlights. Bull. Amer. Meteor. Soc, 85 , 253277.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., G. B. Foote, N. A. Crook, J. C. Fankhauser, C. G. Wade, J. D. Tuttle, and C. K. Mueller, 1992: The role of boundary-layer convergence zones and horizontal rolls in the initiation of thunderstorms: A case study. Mon. Wea. Rev, 120 , 17851815.

    • Search Google Scholar
    • Export Citation
  • Wurman, J. M., J. M. Straka, E. N. Rasmussen, M. Randall, and A. Zahrai, 1997: Design and deployment of a portable, pencil-beam, pulsed, 3-cm Doppler radar. J. Atmos. Oceanic Technol, 14 , 15021512.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 271 68 13
PDF Downloads 160 40 4