Forecasting Convective Initiation by Monitoring the Evolution of Moving Cumulus in Daytime GOES Imagery

John R. Mecikalski Atmospheric Science Department, University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by John R. Mecikalski in
Current site
Google Scholar
PubMed
Close
and
Kristopher M. Bedka Cooperative Institute for Meteorological Satellite Studies, Space Science and Engineering Center, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Kristopher M. Bedka in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study identifies the precursor signals of convective initiation within sequences of 1-km-resolution visible (VIS) and 4–8-km infrared (IR) imagery from the Geostationary Operational Environmental Satellite (GOES) instrument. Convective initiation (CI) is defined for this study as the first detection of Weather Surveillance Radar-1988 Doppler (WSR-88D) reflectivities ≥35 dBZ produced by convective clouds. Results indicate that CI may be forecasted ∼30–45 min in advance through the monitoring of key IR fields for convective clouds. This is made possible by the coincident use of three components of GOES data: 1) a cumulus cloud “mask” at 1-km resolution using VIS and IR data, 2) satellite-derived atmospheric motion vectors (AMVs) for tracking individual cumulus clouds, and 3) IR brightness temperature (TB) and multispectral band-differencing time trends. In effect, these techniques isolate only the cumulus convection in satellite imagery, track moving cumulus convection, and evaluate various IR cloud properties in time. Convective initiation is predicted by accumulating information within a satellite pixel that is attributed to the first occurrence of a ≥35 dBZ radar echo. Through the incorporation of satellite tracking of moving cumulus clouds, this work represents a significant advance in the use of routinely available GOES data for monitoring aspects of cumulus clouds important for nowcasting CI (0–1-h forecasts). Once cumulus cloud tracking is established, eight predictor fields based on Lagrangian trends in IR data are used to characterize cloud conditions consistent with CI. Cumulus cloud pixels for which ≥7 of the 8 CI indicators are satisfied are labeled as having high CI potential, assuming an extrapolation of past trends into the future. Comparison to future WSR-88D imagery then measures the method's predictive skill. Convective initiation predictability is demonstrated using several convective events—one during IHOP_2002—that occur over a variety of synoptic and mesoscale forcing regimes.

Corresponding author address: Prof. John R. Mecikalski, Atmospheric Science Department, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35805-1912. Email: john.mecikalski@nsstc.uah.edu

Abstract

This study identifies the precursor signals of convective initiation within sequences of 1-km-resolution visible (VIS) and 4–8-km infrared (IR) imagery from the Geostationary Operational Environmental Satellite (GOES) instrument. Convective initiation (CI) is defined for this study as the first detection of Weather Surveillance Radar-1988 Doppler (WSR-88D) reflectivities ≥35 dBZ produced by convective clouds. Results indicate that CI may be forecasted ∼30–45 min in advance through the monitoring of key IR fields for convective clouds. This is made possible by the coincident use of three components of GOES data: 1) a cumulus cloud “mask” at 1-km resolution using VIS and IR data, 2) satellite-derived atmospheric motion vectors (AMVs) for tracking individual cumulus clouds, and 3) IR brightness temperature (TB) and multispectral band-differencing time trends. In effect, these techniques isolate only the cumulus convection in satellite imagery, track moving cumulus convection, and evaluate various IR cloud properties in time. Convective initiation is predicted by accumulating information within a satellite pixel that is attributed to the first occurrence of a ≥35 dBZ radar echo. Through the incorporation of satellite tracking of moving cumulus clouds, this work represents a significant advance in the use of routinely available GOES data for monitoring aspects of cumulus clouds important for nowcasting CI (0–1-h forecasts). Once cumulus cloud tracking is established, eight predictor fields based on Lagrangian trends in IR data are used to characterize cloud conditions consistent with CI. Cumulus cloud pixels for which ≥7 of the 8 CI indicators are satisfied are labeled as having high CI potential, assuming an extrapolation of past trends into the future. Comparison to future WSR-88D imagery then measures the method's predictive skill. Convective initiation predictability is demonstrated using several convective events—one during IHOP_2002—that occur over a variety of synoptic and mesoscale forcing regimes.

Corresponding author address: Prof. John R. Mecikalski, Atmospheric Science Department, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35805-1912. Email: john.mecikalski@nsstc.uah.edu

Save
  • Ackerman, S. A., 1996: Global satellite observations of negative brightness temperature differences between 11 and 6.7 μm. J. Atmos. Sci, 53 , 28032812.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and D. D. Fenn, 1979: Thunderstorm vertical velocity estimated from satellite data. J. Atmos. Sci, 36 , 17471754.

  • Adler, R. F., M. J. Markus, and D. D. Feen, 1985: Detection of severe Midwest thunderstorms using geosynchronous satellite data. Mon. Wea. Rev, 113 , 769781.

    • Search Google Scholar
    • Export Citation
  • Bankert, R. L., 1994: Cloud classification of AVHRR imagery in maritime regions using a probabilistic neural network. J. Appl. Meteor, 33 , 909918.

    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor, 3 , 396409.

  • Baum, B. A., V. Tovinkere, J. Titlow, and R. M. Welch, 1997: Automated cloud classification of global AVHRR data using a fuzzy logic approach. J. Appl. Meteor, 36 , 15191540.

    • Search Google Scholar
    • Export Citation
  • Beckman, S. K., 1986: Relationship between cloud bands in satellite imagery and severe weather. Satellite Imagery Interpretation for Forecasters, Vol. 2, Precipitation Convection, P. S. Parke, Ed., National Weather Association. [Available from the NWA, 4400 Stamp Road, No. 404, Temple Hills, MD 20748.].

    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., and J. R. Mecikalski, 2005: Application of satellite-derived atmospheric vectors for estimating mesoscale flows. J. Appl. Meteor, 44 , 17611772.

    • Search Google Scholar
    • Export Citation
  • Ellrod, G. P., 1995: Advances in the detection and analysis of fog at night using GOES multispectral infrared imagery. Wea. Forecasting, 10 , 606619.

    • Search Google Scholar
    • Export Citation
  • Ellrod, G. P., 2004: Loss of the 12 μm “Split Window” band on GOES-M: Impacts on volcanic ash detection. J. Volc. Geothermal Res, 135 , 1–2,. 91103.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., E. W. Fearl, and W. E. Shenk, 1975: Satellite-tracked cumulus velocities. J. Appl. Meteor, 14 , 407413.

  • Griffith, C. G., W. L. Woodley, P. G. Grube, D. W. Martin, J. Stout, and D. N. Sikdar, 1978: Rain estimation from geosynchronous imagery—Visible and infrared studies. Mon. Wea. Rev, 106 , 11531171.

    • Search Google Scholar
    • Export Citation
  • Hand, W. H., 1996: An object-oriented technique for nowcasting heavy showers and thunderstorms. Meteor. Appl, 3 , 3141.

  • Hayden, C. M., G. S. Wade, and T. J. Schmit, 1996: Derived product imagery from GOES-8. J. Appl. Meteor, 35 , 153162.

  • Hill, J., 1991: Weather from Above: America's Meteorological Satellites. Smithsonian Institution Press, 89 pp.

  • Inoue, T., 1987: An instantaneous delineation of convective rainfall area using split window data of NOAA-7 AVHRR. J. Meteor. Soc. Japan, 65 , 469481.

    • Search Google Scholar
    • Export Citation
  • Kuo, K. S., R. M. Welch, and R. C. Weger, 1993: The three-dimensional structure of cumulus clouds over the ocean. 1. Structural analysis. J. Geophys. Res, 98 , 2068520711.

    • Search Google Scholar
    • Export Citation
  • Levizzani, V., and M. Setvák, 1996: Multispectral, high-resolution satellite observations of plumes on top of convective storms. J. Atmos. Sci, 53 , 361369.

    • Search Google Scholar
    • Export Citation
  • Markowski, P., C. Hannon, and E. Rasmussen, 2006: Observations of convection initiation “failure” from the 12 June 2002 IHOP deployment. Mon. Wea. Rev, 134 , 375405.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., D. B. Johnson, and J. J. Murray, and many others at UW-CIMSS and NCAR, 2002: NASA Advanced Satellite Aviation-weather Products (ASAP) study report. NASA Tech. Rep., 65 pp. [Available from the Schwerdtferger Library, 1225 West Dayton Street, University of Wisconsin—Madison, Madison, WI 53706.].

  • Medlin, J. M., and P. J. Croft, 1998: A preliminary investigation and diagnosis of weak shear summertime convective initiation for extreme southwest Alabama. Wea. Forecasting, 13 , 717728.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., and J. F. W. Purdom, 1994: Introducing GOES-I: The first of a new generation of geostationary operational environmental satellites. Bull. Amer. Meteor. Soc, 75 , 757781.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., F. C. Holt, T. J. Schmit, R. M. Aune, A. J. Schreiner, and D. G. Gray, 1998: Application of GOES-8/9 soundings to weather forecasting and nowcasting. Bull. Amer. Meteor. Soc, 79 , 20592077.

    • Search Google Scholar
    • Export Citation
  • McCann, D. W., 1983: The enhanced-V: A satellite observable severe storm signature. Mon. Wea. Rev, 111 , 887894.

  • Minnis, P., and D. F. Young, 2000: Cloud microphysical properties derived from geostationary satellite data. Proc. EUMETSAT Meteorological Satellite Data Users' Conf. 2000, Bologna, Italy, EUMETSAT, 299–305.

  • Mueller, C. K., J. W. Wilson, and N. A. Crook, 1993: The utility of sounding and mesonet data to nowcast thunderstorm initiation. Wea. Forecasting, 8 , 132146.

    • Search Google Scholar
    • Export Citation
  • Mueller, C. K., T. Saxen, R. Roberts, J. Wilson, T. Betancourt, S. Dettling, N. Oien, and J. Yee, 2003: NCAR Auto-Nowcast system. Wea. Forecasting, 18 , 545561.

    • Search Google Scholar
    • Export Citation
  • Murray, J. J., 2002: Aviation weather applications of Earth Science Enterprise data. Earth Observation Magazine, Vol. 11, No. 8, GITC America, 27–30.

  • Nair, U. S., R. C. Weger, K. S. Kuo, and R. M. Welch, 1998: Clustering, randomness, and regularity in cloud fields. 5. The nature of regular cumulus cloud fields. J. Geophys. Res, 103 , 1136311380.

    • Search Google Scholar
    • Export Citation
  • Nair, U. S., J. A. Rushing, R. Ramachadran, K. S. Kuo, R. M. Welch, and S. J. Graves, 1999: Detection of cumulus cloud fields in satellite imagery. Proc. SPIE Conf. on Earth Observing Systems IV, Denver, CO, SPIE, 345–355.

  • Parke, P. S., 1986: Satellite Imagery Interpretation for Forecasters. Vol. 2, Precipitation Convection, National Weather Association. [Available from the NWA, 4400 Stamp Road, No. 404, Temple Hills, MD 20748.].

    • Search Google Scholar
    • Export Citation
  • Prata, A. J., 1989: Observations of volcanic ash clouds in the 10–12 μm window using AVHRR/2 data. Int. J. Remote Sens, 10 , 751761.

    • Search Google Scholar
    • Export Citation
  • Purdom, J. F. W., 1976: Some uses of high resolution GOES imagery in the mesoscale forecasting of convection and its behavior. Mon. Wea. Rev, 104 , 14741483.

    • Search Google Scholar
    • Export Citation
  • Purdom, J. F. W., 1982: Subjective interpretations of geostationary satellite data for nowcasting. Nowcasting, K. Browning, Ed., Academic Press, 149–166.

    • Search Google Scholar
    • Export Citation
  • Purdom, J. F. W., 1986: The development and evolution of deep convection. Satellite Imagery Interpretation for Forecasters. Vol. 2, Precipitation Convection, P. S. Parke, Ed., National Weather Association, 4-a-1–4-a-8. [Available from the NWA, 4400 Stamp Road, No. 404, Temple Hills, MD, 20748.].

    • Search Google Scholar
    • Export Citation
  • Rabin, R. M., 2002: Mesoscale winds in vicinity of convection and winter storms, Proc. Sixth Int. Winds Workshop, Madison, WI, EUMETSAT, 89–96.

  • Rabin, R. M., S. F. Corfidi, J. C. Brunner, and C. E. Hain, 2004: Detecting winds aloft from water vapour satellite imagery in the vicinity of storms. Weather, 59 , 251257.

    • Search Google Scholar
    • Export Citation
  • Riehl, H., and R. A. Schleusener, 1962: On identification of hail-bearing clouds from satellite photographs. Atmospheric Science Tech. Paper 27, Department of Atmospheric Science, Colorado State University, 7 pp.

  • Roberts, R. D., and S. Rutledge, 2003: Nowcasting storm initiation and growth using GOES-8 and WSR-88D data. Wea. Forecasting, 18 , 562584.

    • Search Google Scholar
    • Export Citation
  • Roohr, P. B., and T. H. Vonder Haar, 1994: A comparative analysis of temporal variability of lightning observations and GOES imagery. J. Appl. Meteor, 33 , 12711290.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., S. A. Tjemkes, M. Gube, and L. van de Berg, 1997: Monitoring deep convection and convective overshooting with METEOSAT. Adv. Space Res, 19 , 433441.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., W. F. Feltz, W. P. Menzel, J. Jung, A. P. Noel, J. N. Heil, J. P. Nelsen, and G. S. Wade, 2002: Validation and use of GOES sounder moisture information. Wea. Forecasting, 17 , 139154.

    • Search Google Scholar
    • Export Citation
  • Schreiner, A. T., T. J. Schmit, and W. P. Menzel, 2001: Observed trends of clouds based on GOES sounder data. J. Geophys. Res, 106 , 2034920363.

    • Search Google Scholar
    • Export Citation
  • Setvák, M., and C. A. Doswell III, 1991: The AVHRR channel 3 cloud top reflectivity of convective storms. Mon. Wea. Rev, 119 , 841847.

    • Search Google Scholar
    • Export Citation
  • Setvák, M., R. M. Rabin, C. A. Doswell III, and V. Levizzani, 2003: Satellite observations of convective storm top features in the 1.6 and 3.7/3.9 μm spectral bands. Atmos. Res, 67–68C , 589605.

    • Search Google Scholar
    • Export Citation
  • Soden, B., and F. P. Bretherton, 1993: Upper tropospheric humidity from GOES 6.7 μm channel: Method and climatology for July 1987. J. Geophys. Res, 98 , 1666916688.

    • Search Google Scholar
    • Export Citation
  • Strabala, K. I., S. A. Ackerman, and W. P. Menzel, 1994: Cloud properties inferred from 8–12 μm data. J. Appl. Meteor, 33 , 212229.

    • Search Google Scholar
    • Export Citation
  • Uddstrom, M. J., and W. R. Gray, 1996: Satellite cloud classification and rain-rate estimation using multispectral radiances and measures of spatial texture. J. Appl. Meteor, 35 , 839858.

    • Search Google Scholar
    • Export Citation
  • Velden, C. S., C. M. Hayden, S. J. Nieman, W. P. Menzel, S. Wanzong, and J. S. Goerss, 1997: Upper-tropospheric winds derived from geostationary satellite water vapor observations. Bull. Amer. Meteor. Soc, 78 , 173195.

    • Search Google Scholar
    • Export Citation
  • Velden, C. S., T. Olander, and S. Wanzong, 1998: The impact of multispectral GOES-8 wind information on Atlantic tropical cyclone track forecasts in 1995. Part I: Dataset methodology, description, and case analysis. Mon. Wea. Rev, 126 , 12021218.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and D. B. Parsons, 2006: A review of convective initiation and motivation for IHOP_2002. Mon. Wea. Rev, 134 , 522.

  • Weckwerth, T. M., and Coauthors, 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc, 85 , 253277.

    • Search Google Scholar
    • Export Citation
  • Weldon, R. B., and S. J. Holmes, 1991: Water vapor imagery: Interpretation and applications to weather analysis and forecasting. NOAA Tech. Rep. NESDIS 57, U.S. Dept. of Commerce, 213 pp.

  • Wielicki, B. A., and R. M. Welch, 1986: Cumulus cloud properties derived using Landsat satellite data. J. Appl. Meteor, 25 , 261276.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1898 913 111
PDF Downloads 1305 435 59