Abstract
This study identifies the precursor signals of convective initiation within sequences of 1-km-resolution visible (VIS) and 4–8-km infrared (IR) imagery from the Geostationary Operational Environmental Satellite (GOES) instrument. Convective initiation (CI) is defined for this study as the first detection of Weather Surveillance Radar-1988 Doppler (WSR-88D) reflectivities ≥35 dBZ produced by convective clouds. Results indicate that CI may be forecasted ∼30–45 min in advance through the monitoring of key IR fields for convective clouds. This is made possible by the coincident use of three components of GOES data: 1) a cumulus cloud “mask” at 1-km resolution using VIS and IR data, 2) satellite-derived atmospheric motion vectors (AMVs) for tracking individual cumulus clouds, and 3) IR brightness temperature (TB) and multispectral band-differencing time trends. In effect, these techniques isolate only the cumulus convection in satellite imagery, track moving cumulus convection, and evaluate various IR cloud properties in time. Convective initiation is predicted by accumulating information within a satellite pixel that is attributed to the first occurrence of a ≥35 dBZ radar echo. Through the incorporation of satellite tracking of moving cumulus clouds, this work represents a significant advance in the use of routinely available GOES data for monitoring aspects of cumulus clouds important for nowcasting CI (0–1-h forecasts). Once cumulus cloud tracking is established, eight predictor fields based on Lagrangian trends in IR data are used to characterize cloud conditions consistent with CI. Cumulus cloud pixels for which ≥7 of the 8 CI indicators are satisfied are labeled as having high CI potential, assuming an extrapolation of past trends into the future. Comparison to future WSR-88D imagery then measures the method's predictive skill. Convective initiation predictability is demonstrated using several convective events—one during IHOP_2002—that occur over a variety of synoptic and mesoscale forcing regimes.
Corresponding author address: Prof. John R. Mecikalski, Atmospheric Science Department, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35805-1912. Email: john.mecikalski@nsstc.uah.edu